These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29228590)

  • 1. Precision and recall oncology: combining multiple gene mutations for improved identification of drug-sensitive tumours.
    Naulaerts S; Dang CC; Ballester PJ
    Oncotarget; 2017 Nov; 8(57):97025-97040. PubMed ID: 29228590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data.
    Nguyen L; Dang CC; Ballester PJ
    F1000Res; 2016; 5():. PubMed ID: 28299173
    [No Abstract]   [Full Text] [Related]  

  • 3. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics.
    Ding MQ; Chen L; Cooper GF; Young JD; Lu X
    Mol Cancer Res; 2018 Feb; 16(2):269-278. PubMed ID: 29133589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unearthing new genomic markers of drug response by improved measurement of discriminative power.
    Dang CC; Peón A; Ballester PJ
    BMC Med Genomics; 2018 Feb; 11(1):10. PubMed ID: 29409485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles.
    Nguyen LC; Naulaerts S; Bruna A; Ghislat G; Ballester PJ
    Biomedicines; 2021 Sep; 9(10):. PubMed ID: 34680436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting high-throughput cell line drug screening studies to identify candidate therapeutic agents in head and neck cancer.
    Nichols AC; Black M; Yoo J; Pinto N; Fernandes A; Haibe-Kains B; Boutros PC; Barrett JW
    BMC Pharmacol Toxicol; 2014 Nov; 15():66. PubMed ID: 25428177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-guided modeling allows tumor-type independent prediction of sensitivity to all-trans-retinoic acid.
    Bolis M; Garattini E; Paroni G; Zanetti A; Kurosaki M; Castrignanò T; Garattini SK; Biancardi F; Barzago MM; Gianni' M; Terao M; Pattini L; Fratelli M
    Ann Oncol; 2017 Mar; 28(3):611-621. PubMed ID: 27993792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of anti-cancer drug response by kernelized multi-task learning.
    Tan M
    Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational identification of multi-omic correlates of anticancer therapeutic response.
    Stetson LC; Pearl T; Chen Y; Barnholtz-Sloan JS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S2. PubMed ID: 25573145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paclitaxel Response Can Be Predicted With Interpretable Multi-Variate Classifiers Exploiting DNA-Methylation and miRNA Data.
    Bomane A; Gonçalves A; Ballester PJ
    Front Genet; 2019; 10():1041. PubMed ID: 31708973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine.
    Kim HS; Sung YJ; Paik S
    Yonsei Med J; 2015 Sep; 56(5):1186-98. PubMed ID: 26256959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial-Mesenchymal Transition Predicts Polo-Like Kinase 1 Inhibitor-Mediated Apoptosis in Non-Small Cell Lung Cancer.
    Ferrarotto R; Goonatilake R; Yoo SY; Tong P; Giri U; Peng S; Minna J; Girard L; Wang Y; Wang L; Li L; Diao L; Peng DH; Gibbons DL; Glisson BS; Heymach JV; Wang J; Byers LA; Johnson FM
    Clin Cancer Res; 2016 Apr; 22(7):1674-1686. PubMed ID: 26597303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying anti-cancer drug response related genes using an integrative analysis of transcriptomic and genomic variations with cell line-based drug perturbations.
    Sun Y; Zhang W; Chen Y; Ma Q; Wei J; Liu Q
    Oncotarget; 2016 Feb; 7(8):9404-19. PubMed ID: 26824188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.
    Tang YC; Ho SC; Tan E; Ng AWT; McPherson JR; Goh GYL; Teh BT; Bard F; Rozen SG
    Breast Cancer Res; 2018 Mar; 20(1):22. PubMed ID: 29566768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.