These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29228590)

  • 41. Identification of an "Exceptional Responder" Cell Line to MEK1 Inhibition: Clinical Implications for MEK-Targeted Therapy.
    Gannon HS; Kaplan N; Tsherniak A; Vazquez F; Weir BA; Hahn WC; Meyerson M
    Mol Cancer Res; 2016 Feb; 14(2):207-15. PubMed ID: 26582713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies.
    Berg KCG; Eide PW; Eilertsen IA; Johannessen B; Bruun J; Danielsen SA; Bjørnslett M; Meza-Zepeda LA; Eknæs M; Lind GE; Myklebost O; Skotheim RI; Sveen A; Lothe RA
    Mol Cancer; 2017 Jul; 16(1):116. PubMed ID: 28683746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SiNVICT: ultra-sensitive detection of single nucleotide variants and indels in circulating tumour DNA.
    Kockan C; Hach F; Sarrafi I; Bell RH; McConeghy B; Beja K; Haegert A; Wyatt AW; Volik SV; Chi KN; Collins CC; Sahinalp SC
    Bioinformatics; 2017 Jan; 33(1):26-34. PubMed ID: 27531099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioinformatory-assisted analysis of next-generation sequencing data for precision medicine in pancreatic cancer.
    Malgerud L; Lindberg J; Wirta V; Gustafsson-Liljefors M; Karimi M; Moro CF; Stecker K; Picker A; Huelsewig C; Stein M; Bohnert R; Del Chiaro M; Haas SL; Heuchel RL; Permert J; Maeurer MJ; Brock S; Verbeke CS; Engstrand L; Jackson DB; Grönberg H; Löhr JM
    Mol Oncol; 2017 Oct; 11(10):1413-1429. PubMed ID: 28675654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.
    Huang C; Mezencev R; McDonald JF; Vannberg F
    PLoS One; 2017; 12(10):e0186906. PubMed ID: 29073279
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomics of drug sensitivity in bladder cancer: an integrated resource for pharmacogenomic analysis in bladder cancer.
    Ansari AA; Park I; Kim I; Park S; Ahn SM; Lee JL
    BMC Med Genomics; 2018 Oct; 11(1):88. PubMed ID: 30285760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analyzing the clinical actionability of germline pharmacogenomic findings in oncology.
    Wellmann R; Borden BA; Danahey K; Nanda R; Polite BN; Stadler WM; Ratain MJ; O'Donnell PH
    Cancer; 2018 Jul; 124(14):3052-3065. PubMed ID: 29742281
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gene expression profiling of breast tumor cell lines to predict for therapeutic response to microtubule-stabilizing agents.
    Kadra G; Finetti P; Toiron Y; Viens P; Birnbaum D; Borg JP; Bertucci F; Gonçalves A
    Breast Cancer Res Treat; 2012 Apr; 132(3):1035-47. PubMed ID: 21792624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine.
    Zhu Z; Ihle NT; Rejto PA; Zarrinkar PP
    BMC Genomics; 2016 Jun; 17():455. PubMed ID: 27296290
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gefitinib (IRESSA) sensitive lung cancer cell lines show phosphorylation of Akt without ligand stimulation.
    Noro R; Gemma A; Kosaihira S; Kokubo Y; Chen M; Seike M; Kataoka K; Matsuda K; Okano T; Minegishi Y; Yoshimura A; Kudoh S
    BMC Cancer; 2006 Dec; 6():277. PubMed ID: 17150102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review of model evaluation metrics for machine learning in genetics and genomics.
    Miller C; Portlock T; Nyaga DM; O'Sullivan JM
    Front Bioinform; 2024; 4():1457619. PubMed ID: 39318760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-Scale Machine Learning Analysis Reveals DNA Methylation and Gene Expression Response Signatures for Gemcitabine-Treated Pancreatic Cancer.
    Ogunleye A; Piyawajanusorn C; Ghislat G; Ballester PJ
    Health Data Sci; 2024; 4():0108. PubMed ID: 38486621
    [No Abstract]   [Full Text] [Related]  

  • 53. Predicting the formation of NADES using a transformer-based model.
    Ayres LB; Gomez FJV; Silva MF; Linton JR; Garcia CD
    Sci Rep; 2024 Feb; 14(1):2715. PubMed ID: 38388549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interpretable Machine Learning Models to Predict the Resistance of Breast Cancer Patients to Doxorubicin from Their microRNA Profiles.
    Ogunleye AZ; Piyawajanusorn C; Gonçalves A; Ghislat G; Ballester PJ
    Adv Sci (Weinh); 2022 Aug; 9(24):e2201501. PubMed ID: 35785523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting Anticancer Drug Resistance Mediated by Mutations.
    Lin YF; Liu JJ; Chang YJ; Yu CS; Yi W; Lane HY; Lu CH
    Pharmaceuticals (Basel); 2022 Jan; 15(2):. PubMed ID: 35215249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effective identification of varieties by nucleotide polymorphisms and its application for essentially derived variety identification in rice.
    Yuan X; Li Z; Xiong L; Song S; Zheng X; Tang Z; Yuan Z; Li L
    BMC Bioinformatics; 2022 Jan; 23(1):30. PubMed ID: 35012448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles.
    Nguyen LC; Naulaerts S; Bruna A; Ghislat G; Ballester PJ
    Biomedicines; 2021 Sep; 9(10):. PubMed ID: 34680436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles.
    Naulaerts S; Menden MP; Ballester PJ
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32604779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.
    Chicco D; Jurman G
    BMC Genomics; 2020 Jan; 21(1):6. PubMed ID: 31898477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.