These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29229404)

  • 1. Integrated experimental and computational approach to laser machining of structural bone.
    Dahotre NB; Santhanakrishnan S; Joshi SS; Khan RJK; Fick DP; Robertson WB; Sheh RK; Ironside CN
    Med Eng Phys; 2018 Jan; 51():56-66. PubMed ID: 29229404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Assessment of Ex Vivo Laser Ablation of Cortical Bone.
    Pantawane MV; Ho YH; Robertson WB; Khan RJK; Fick DP; Dahotre NB
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2415-2426. PubMed ID: 33455309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser ablation of bovine cortical bone.
    Cangueiro LT; Vilar R; Botelho do Rego AM; Muralha VS
    J Biomed Opt; 2012 Dec; 17(12):125005. PubMed ID: 23208295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models.
    Kim K; Kim IS; Cho TH; Seo YK; Hwang SJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):943-51. PubMed ID: 24254743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of surface morphology of Er:YAG laser-machined human bone.
    Pantawane MV; Chipper RT; Robertson WB; Khan RJK; Fick DP; Dahotre NB
    Lasers Med Sci; 2020 Sep; 35(7):1477-1485. PubMed ID: 31828574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser irradiation of bone: III. Long-term healing following treatment by CO2 and Nd:YAG lasers.
    McDavid VG; Cobb CM; Rapley JW; Glaros AG; Spencer P
    J Periodontol; 2001 Feb; 72(2):174-82. PubMed ID: 11288790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specifications for machining the bovine cortical bone in relation to its microstructure.
    Sugita N; Mitsuishi M
    J Biomech; 2009 Dec; 42(16):2826-9. PubMed ID: 19775694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are copper vapour and frequency doubled Nd:YAG lasers superior to the argon laser for portwine stains at pulse widths of 30-50 milliseconds?
    Sheehan-Dare RA; Cotterill JA
    Lasers Surg Med; 1996; 18(1):46-51. PubMed ID: 8850465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficiency of bone ablation with an Nd:YAG laser beam delivered with a cooling spray: an in vitro study.
    Rizoiu IM; Levy GC
    Compendium; 1994 Jan; 15(1):106, 108, 110-1; quiz 112. PubMed ID: 8187144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal parameters for the treatment of leg veins using Nd:YAG lasers at 1064 nm.
    Bäumler W; Ulrich H; Hartl A; Landthaler M; Shafirstein G
    Br J Dermatol; 2006 Aug; 155(2):364-71. PubMed ID: 16882176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-Induced-Plasma-Assisted Ablation and Metallization on C-Plane Single Crystal Sapphire (c-Al₂O₃).
    Lu X; Jiang F; Lei T; Zhou R; Zhang C; Zheng G; Wen Q; Chen Z
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ex vivo study of the adhesion of an epoxy-based sealer to human dentine submitted to irradiation with Er : YAG and Nd : YAG lasers.
    Sousa-Neto MD; Silva Coelho FI; Marchesan MA; Alfredo E; Silva-Sousa YT
    Int Endod J; 2005 Dec; 38(12):866-70. PubMed ID: 16343112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of cutting quality and surface roughness in abrasive water jet machining of bone.
    Shakouri E; Abbasi M
    Proc Inst Mech Eng H; 2018 Sep; 232(9):850-861. PubMed ID: 30052115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histologic evaluation of the effects of Er:YAG laser on bone ablation.
    Akyol UK; Güngörmüs M; Gündogdu C; Erdem H
    J Contemp Dent Pract; 2009 Sep; 10(5):E065-72. PubMed ID: 19838612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser irradiation of bone: II. Healing response following treatment by CO2 and Nd:YAG lasers.
    Friesen LR; Cobb CM; Rapley JW; Forgas-Brockman L; Spencer P
    J Periodontol; 1999 Jan; 70(1):75-83. PubMed ID: 10052774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity.
    Yoshioka H; Nakamura S; Ogawa T; Wada S
    Opt Express; 2010 Jan; 18(2):1479-86. PubMed ID: 20173976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 980- and 1064-nm wavelengths for interstitial laser thermotherapy of the liver.
    Nikfarjam M; Malcontenti-Wilson C; Christophi C
    Photomed Laser Surg; 2005 Jun; 23(3):284-8. PubMed ID: 15954816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning electron microscope observations of CO2 laser effects on dental enamel.
    McCormack SM; Fried D; Featherstone JD; Glena RE; Seka W
    J Dent Res; 1995 Oct; 74(10):1702-8. PubMed ID: 7499594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical modeling, Sobol sensitivity analysis and optimization of single-tip tool geometrical parameters in the cortical bone machining process.
    Tahmasbi V; Safari M; Joudaki J
    Proc Inst Mech Eng H; 2020 Jan; 234(1):28-38. PubMed ID: 31617818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.