These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29229858)

  • 21. Swim and fly: escape strategy in neustonic and planktonic copepods.
    Svetlichny L; Larsen PS; Kiørboe T
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29191859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homeostatic swimming of zooplankton upon crowding: the case of the copepod
    Uttieri M; Hinow P; Pastore R; Bianco G; Ribera d'Alcalá M; Mazzocchi MG
    J R Soc Interface; 2021 Jun; 18(179):20210270. PubMed ID: 34157893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined effects of turbulence and different predation regimes on zooplankton in highly colored water-implications for environmental change in lakes.
    Härkönen L; Pekcan-Hekim Z; Hellén N; Ojala A; Horppila J
    PLoS One; 2014; 9(11):e111942. PubMed ID: 25375952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrodynamic and biological constraints on group cohesion in plankton.
    Chaput R; Majoris JE; Buston PM; Paris CB
    J Theor Biol; 2019 Dec; 482():109987. PubMed ID: 31473190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoplankton can actively diversify their migration strategy in response to turbulent cues.
    Sengupta A; Carrara F; Stocker R
    Nature; 2017 Mar; 543(7646):555-558. PubMed ID: 28297706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zooplankton biomass, size structure, and associated metabolic fluxes with focus on its roles at the chlorophyll maximum layer during the plankton-contaminant MERITE-HIPPOCAMPE cruise.
    Fierro-González P; Pagano M; Guilloux L; Makhlouf N; Tedetti M; Carlotti F
    Mar Pollut Bull; 2023 Aug; 193():115056. PubMed ID: 37352804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compensatory escape mechanism at low Reynolds number.
    Gemmell BJ; Sheng J; Buskey EJ
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4661-6. PubMed ID: 23487740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu.
    Zhou J; Qin B; Han X
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1168-1175. PubMed ID: 29081040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is Zooplankton an Entry Point of Microplastics into the Marine Food Web?
    Gunaalan K; Nielsen TG; Rodríguez Torres R; Lorenz C; Vianello A; Andersen CA; Vollertsen J; Almeda R
    Environ Sci Technol; 2023 Aug; 57(31):11643-11655. PubMed ID: 37497822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency.
    Cripps G; Flynn KJ; Lindeque PK
    PLoS One; 2016; 11(4):e0151739. PubMed ID: 27082737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level.
    Sommer U; Hansen T; Blum O; Holzner N; Vadstein O; Stibor H
    Oecologia; 2005 Jan; 142(2):274-83. PubMed ID: 15480805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean.
    Wang YG; Tseng LC; Lin M; Hwang JS
    PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Planktonic encounter rates in homogeneous isotropic turbulence: the case of predators with limited fields of sensory perception.
    Lewis DM
    J Theor Biol; 2003 May; 222(1):73-97. PubMed ID: 12699736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plankton predation rates in turbulence: a study of the limitations imposed on a predator with a non-spherical field of sensory perception.
    Lewis DM; Bala SI
    J Theor Biol; 2006 Sep; 242(1):44-61. PubMed ID: 16542686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of phototaxis in marine zooplankton.
    Jékely G; Colombelli J; Hausen H; Guy K; Stelzer E; Nédélec F; Arendt D
    Nature; 2008 Nov; 456(7220):395-9. PubMed ID: 19020621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unpalatable Plastic: Efficient Taste Discrimination of Microplastics in Planktonic Copepods.
    Xu J; Rodríguez-Torres R; Rist S; Nielsen TG; Hartmann NB; Brun P; Li D; Almeda R
    Environ Sci Technol; 2022 May; 56(10):6455-6465. PubMed ID: 35475612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator.
    Tuttle LJ; Robinson HE; Takagi D; Strickler JR; Lenz PH; Hartline DK
    J R Soc Interface; 2019 Feb; 16(151):20180776. PubMed ID: 30958200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fluid dynamics of swimming by jumping in copepods.
    Jiang H; Kiørboe T
    J R Soc Interface; 2011 Aug; 8(61):1090-103. PubMed ID: 21208972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of encounter rates between zooplankton organisms and microplastics in a tropical estuary.
    Sanvicente-Añorve L; Alatorre-Mendieta M; Sánchez-Campos M; Ponce-Vélez G; Lemus-Santana E
    PLoS One; 2023; 18(10):e0292462. PubMed ID: 37796862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory-Motor Systems of Copepods involved in their Escape from Suction Feeding.
    Yen J; Murphy DW; Fan L; Webster DR
    Integr Comp Biol; 2015 Jul; 55(1):121-33. PubMed ID: 26015485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.