These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29230089)

  • 21. Atomic layer deposition of nano-TiO
    Liu L; Bhatia R; Webster TJ
    Int J Nanomedicine; 2017; 12():8711-8723. PubMed ID: 29263665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of BMP-2/chitosan/hydroxyapatite antibacterial bio-composite coatings on titanium surfaces for bone tissue engineering.
    Wang X; Li B; Zhang C
    Biomed Microdevices; 2019 Oct; 21(4):89. PubMed ID: 31655887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro cytotoxicity evaluation of porous TiO₂-Ag antibacterial coatings for human fetal osteoblasts.
    Necula BS; van Leeuwen JP; Fratila-Apachitei LE; Zaat SA; Apachitei I; Duszczyk J
    Acta Biomater; 2012 Nov; 8(11):4191-7. PubMed ID: 22813846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications.
    Zhong Z; Ma J
    J Biomater Appl; 2017 Sep; 32(3):399-409. PubMed ID: 28747081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytocompatibility and antibacterial activity of nanostructured H
    Zhang L; Zhang J; Dai F; Han Y
    Sci Rep; 2017 Oct; 7(1):13951. PubMed ID: 29066726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity.
    Wu K; Song W; Zhao L; Liu M; Yan J; Andersen MØ; Kjems J; Gao S; Zhang Y
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2733-44. PubMed ID: 23459382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced antibacterial activity and biocompatibility of zinc-incorporated organic-inorganic nanocomposite coatings via electrophoretic deposition.
    Huang P; Ma K; Cai X; Huang D; Yang X; Ran J; Wang F; Jiang T
    Colloids Surf B Biointerfaces; 2017 Dec; 160():628-638. PubMed ID: 29031223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the antibacterial activity of biomimetic HA coatings by incorporation of norvancomycin.
    Pan CJ; Dong YX; Zhang YY; Nie YD; Zhao CH; Wang YL
    J Orthop Sci; 2011 Jan; 16(1):105-13. PubMed ID: 21293894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process.
    Chen W; Oh S; Ong AP; Oh N; Liu Y; Courtney HS; Appleford M; Ong JL
    J Biomed Mater Res A; 2007 Sep; 82(4):899-906. PubMed ID: 17335020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro antibacterial activity and cytocompatibility of bismuth doped micro-arc oxidized titanium.
    Lin DJ; Tsai MT; Shieh TM; Huang HL; Hsu JT; Ko YC; Fuh LJ
    J Biomater Appl; 2013 Jan; 27(5):553-63. PubMed ID: 21926149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of applied voltages on the structure, apatite-inducing ability and antibacterial ability of micro arc oxidation coating formed on titanium surface.
    Du Q; Wei D; Wang Y; Cheng S; Liu S; Zhou Y; Jia D
    Bioact Mater; 2018 Dec; 3(4):426-433. PubMed ID: 29988748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings.
    Huang D; Ma K; Cai X; Yang X; Hu Y; Huang P; Wang F; Jiang T; Wang Y
    Int J Nanomedicine; 2017; 12():7483-7500. PubMed ID: 29066895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation.
    Song WH; Ryu HS; Hong SH
    J Biomed Mater Res A; 2009 Jan; 88(1):246-54. PubMed ID: 18286618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Preparation of hydroxyapatite/chitosan-transforming growth factor-β composite coatings on titanium surfaces and its effect on the attachment and proliferation of osteoblasts].
    Shiran G; Fan Z; Mengting L; Ting H; Lige Z
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2016 Jun; 34(3):229-33. PubMed ID: 27526444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Coatings to Minimize Bacterial Adhesion and Promote Osteoblast Activity for Titanium Implants.
    Camargo SEA; Roy T; Carey Iv PH; Fares C; Ren F; Clark AE; Esquivel-Upshaw JF
    J Funct Biomater; 2020 Jun; 11(2):. PubMed ID: 32560139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactive Silk Coatings Reduce the Adhesion of
    Nilebäck L; Widhe M; Seijsing J; Bysell H; Sharma PK; Hedhammar M
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):24999-25007. PubMed ID: 31241302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays.
    Huo K; Zhang X; Wang H; Zhao L; Liu X; Chu PK
    Biomaterials; 2013 Apr; 34(13):3467-78. PubMed ID: 23439134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. F-doped TiO
    Zhou J; Li B; Han Y
    Sci Rep; 2018 Dec; 8(1):17858. PubMed ID: 30552353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study.
    Norambuena GA; Patel R; Karau M; Wyles CC; Jannetto PJ; Bennet KE; Hanssen AD; Sierra RJ
    Clin Orthop Relat Res; 2017 Mar; 475(3):722-732. PubMed ID: 26847453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion.
    Liu P; Zhao Y; Yuan Z; Ding H; Hu Y; Yang W; Cai K
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():998-1005. PubMed ID: 28415556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.