These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 29230589)

  • 1. Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework.
    Gómez P; Schützenberger A; Kniesburges S; Bohr C; Döllinger M
    Biomech Model Mechanobiol; 2018 Jun; 17(3):777-792. PubMed ID: 29230589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subglottal pressure and fundamental frequency control in contact calls of juvenile Alligator mississippiensis.
    Riede T; Tokuda IT; Farmer CG
    J Exp Biol; 2011 Sep; 214(Pt 18):3082-95. PubMed ID: 21865521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.
    Döllinger M; Gómez P; Patel RR; Alexiou C; Bohr C; Schützenberger A
    PLoS One; 2017; 12(11):e0187486. PubMed ID: 29121085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of cricothyroid muscle action on the relation between subglottal pressure and fundamental frequency in an in vivo canine model.
    Hsiao TY; Liu CM; Luschei ES; Titze IR
    J Voice; 2001 Jun; 15(2):187-93. PubMed ID: 11411473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic profiles of a hemilarynx with a vocal tract.
    Alipour F; Montequin D; Tayama N
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations.
    Lehoux S; Hampala V; Švec JG
    Sci Rep; 2021 Jan; 11(1):28. PubMed ID: 33420107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network-based estimation of biomechanical vocal fold parameters.
    Donhauser J; Tur B; Döllinger M
    Front Physiol; 2024; 15():1282574. PubMed ID: 38449783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laryngeal Pressure Estimation With a Recurrent Neural Network.
    Gomez P; Schutzenberger A; Semmler M; Dollinger M
    IEEE J Transl Eng Health Med; 2019; 7():2000111. PubMed ID: 30680252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model.
    Ibarra EJ; Parra JA; Alzamendi GA; Cortés JP; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Front Physiol; 2021; 12():732244. PubMed ID: 34539451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting physiologically relevant parameters of vocal folds from high-speed video image series.
    Tao C; Zhang Y; Jiang JJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):794-801. PubMed ID: 17518275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the relaxation oscillations principle for simple phonation modeling.
    Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M
    J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. II. Vocalic attach and end of emission].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):343-55. PubMed ID: 6163403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2014 Nov; 136(5):EL369-75. PubMed ID: 25373995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges.
    Ouaknine M; Garrel R; Giovanni A
    Folia Phoniatr Logop; 2003; 55(1):28-38. PubMed ID: 12566764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.