These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 29230640)
1. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. Komarov M; Krishnan G; Chauvette S; Rulkov N; Timofeev I; Bazhenov M J Comput Neurosci; 2018 Feb; 44(1):1-24. PubMed ID: 29230640 [TBL] [Abstract][Full Text] [Related]
2. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations. Wei Y; Krishnan GP; Bazhenov M J Neurosci; 2016 Apr; 36(15):4231-47. PubMed ID: 27076422 [TBL] [Abstract][Full Text] [Related]
3. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. Fan D; Wang Q; Su J; Xi H J Comput Neurosci; 2017 Dec; 43(3):203-225. PubMed ID: 28939929 [TBL] [Abstract][Full Text] [Related]
4. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ J Neurosci; 2002 Oct; 22(19):8691-704. PubMed ID: 12351744 [TBL] [Abstract][Full Text] [Related]
5. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex. Fucke T; Suchanek D; Nawrot MP; Seamari Y; Heck DH; Aertsen A; Boucsein C J Neurophysiol; 2011 Dec; 106(6):3035-44. PubMed ID: 21849616 [TBL] [Abstract][Full Text] [Related]
7. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Eschenko O; Magri C; Panzeri S; Sara SJ Cereb Cortex; 2012 Feb; 22(2):426-35. PubMed ID: 21670101 [TBL] [Abstract][Full Text] [Related]
9. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation. Sheroziya M; Timofeev I J Neurosci; 2015 Sep; 35(38):13006-19. PubMed ID: 26400932 [TBL] [Abstract][Full Text] [Related]
10. Slow-wave oscillations in a corticothalamic model of sleep and wake. Zhao X; Kim JW; Robinson PA J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479 [TBL] [Abstract][Full Text] [Related]
12. 7-12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles. Sakata S; Yamamori T; Sakurai Y Neuroscience; 2005; 134(4):1099-111. PubMed ID: 16019153 [TBL] [Abstract][Full Text] [Related]
13. Transient and Persistent UP States during Slow-wave Oscillation and their Implications for Cell-Assembly Dynamics. Fung CCA; Fukai T Sci Rep; 2018 Jul; 8(1):10680. PubMed ID: 30013083 [TBL] [Abstract][Full Text] [Related]
14. Propagating waves can explain irregular neural dynamics. Keane A; Gong P J Neurosci; 2015 Jan; 35(4):1591-605. PubMed ID: 25632135 [TBL] [Abstract][Full Text] [Related]
15. Modeling sleep and wakefulness in the thalamocortical system. Hill S; Tononi G J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811 [TBL] [Abstract][Full Text] [Related]
16. State-dependent effects of Na channel noise on neuronal burst generation. Rowat PF; Elson RC J Comput Neurosci; 2004; 16(2):87-112. PubMed ID: 14758060 [TBL] [Abstract][Full Text] [Related]
17. A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. Cona F; Lacanna M; Ursino M J Comput Neurosci; 2014 Aug; 37(1):125-48. PubMed ID: 24402459 [TBL] [Abstract][Full Text] [Related]
18. The thalamic low-threshold Ca²⁺ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Crunelli V; Errington AC; Hughes SW; Tóth TI Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3820-39. PubMed ID: 21893530 [TBL] [Abstract][Full Text] [Related]