BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 29230865)

  • 1. Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy.
    Sharma S; Puttachary S; Thippeswamy T
    J Neurosci Res; 2019 Nov; 97(11):1363-1377. PubMed ID: 29230865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy.
    Löscher W
    Epilepsy Res; 2002 Jun; 50(1-2):105-23. PubMed ID: 12151122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis.
    Tse K; Hammond D; Simpson D; Beynon RJ; Beamer E; Tymianski M; Salter MW; Sills GJ; Thippeswamy T
    J Neurosci Res; 2019 Nov; 97(11):1378-1392. PubMed ID: 31090233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy.
    Ravizza T; Gagliardi B; Noé F; Boer K; Aronica E; Vezzani A
    Neurobiol Dis; 2008 Jan; 29(1):142-60. PubMed ID: 17931873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis.
    Becker AJ
    Neuropathol Appl Neurobiol; 2018 Feb; 44(1):112-129. PubMed ID: 29130506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-epileptogenic and Anti-convulsive Effects of Fingolimod in Experimental Temporal Lobe Epilepsy.
    Pitsch J; Kuehn JC; Gnatkovsky V; Müller JA; van Loo KMJ; de Curtis M; Vatter H; Schoch S; Elger CE; Becker AJ
    Mol Neurobiol; 2019 Mar; 56(3):1825-1840. PubMed ID: 29934763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems-level analysis identifies key regulators driving epileptogenesis in temporal lobe epilepsy.
    Fu Y; Wu Z; Guo Z; Chen L; Ma Y; Wang Z; Xiao W; Wang Y
    Genomics; 2020 Mar; 112(2):1768-1780. PubMed ID: 31669700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy.
    Pauletti A; Terrone G; Shekh-Ahmad T; Salamone A; Ravizza T; Rizzi M; Pastore A; Pascente R; Liang LP; Villa BR; Balosso S; Abramov AY; van Vliet EA; Del Giudice E; Aronica E; Antoine DJ; Patel M; Walker MC; Vezzani A
    Brain; 2017 Jul; 140(7):1885-1899. PubMed ID: 28575153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide, epileptic seizures, and action of antiepileptic drugs.
    Banach M; Piskorska B; Czuczwar SJ; Borowicz KK
    CNS Neurol Disord Drug Targets; 2011 Nov; 10(7):808-19. PubMed ID: 21999730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do proconvulsants modify or halt epileptogenesis? Pentylenetetrazole is ineffective in two rat models of temporal lobe epilepsy.
    Rattka M; Brandt C; Löscher W
    Eur J Neurosci; 2012 Aug; 36(4):2505-20. PubMed ID: 22672239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research.
    Löscher W; Brandt C
    Pharmacol Rev; 2010 Dec; 62(4):668-700. PubMed ID: 21079040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity.
    Filibian M; Frasca A; Maggioni D; Micotti E; Vezzani A; Ravizza T
    Epilepsia; 2012 Nov; 53(11):1907-16. PubMed ID: 23030308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Antiepileptogenic Drugs for Acquired Epilepsy: Targeting the Mammalian Target of Rapamycin (mTOR) Pathway.
    Zeng LH; Rensing NR; Wong M
    Mol Cell Pharmacol; 2009 Jan; 1(3):124-129. PubMed ID: 20419051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant effects of sex, strain, and anesthesia in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy.
    Twele F; Töllner K; Brandt C; Löscher W
    Epilepsy Behav; 2016 Feb; 55():47-56. PubMed ID: 26736063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments.
    Löscher W
    Neuropharmacology; 2020 May; 167():107605. PubMed ID: 30980836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metalloprotease Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation.
    Zhu X; Li X; Zhu M; Xu K; Yang L; Han B; Huang R; Zhang A; Yao H
    J Neuroinflammation; 2018 Aug; 15(1):221. PubMed ID: 30075790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomarkers for epileptogenesis and its treatment.
    Engel J; Pitkänen A
    Neuropharmacology; 2020 May; 167():107735. PubMed ID: 31377200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy.
    Brandt C; Potschka H; Löscher W; Ebert U
    Neuroscience; 2003; 118(3):727-40. PubMed ID: 12710980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus.
    Wang N; Mi X; Gao B; Gu J; Wang W; Zhang Y; Wang X
    Neuroscience; 2015 Feb; 287():144-56. PubMed ID: 25541249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TrkB-Shc Signaling Protects against Hippocampal Injury Following Status Epilepticus.
    Huang YZ; He XP; Krishnamurthy K; McNamara JO
    J Neurosci; 2019 Jun; 39(23):4624-4630. PubMed ID: 30926745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.