These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 29230920)
41. Spatial sorting and range shifts: consequences for evolutionary potential and genetic signature of a dispersal trait. Cobben MM; Verboom J; Opdam PF; Hoekstra RF; Jochem R; Smulders MJ J Theor Biol; 2015 May; 373():92-9. PubMed ID: 25817038 [TBL] [Abstract][Full Text] [Related]
42. Eco-evolutionary feedbacks during experimental range expansions. Fronhofer EA; Altermatt F Nat Commun; 2015 Apr; 6():6844. PubMed ID: 25902302 [TBL] [Abstract][Full Text] [Related]
43. Amensalism via webs causes unidirectional shifts of dominance in spider mite communities. Osakabe M; Hongo K; Funayama K; Osumi S Oecologia; 2006 Dec; 150(3):496-505. PubMed ID: 17024380 [TBL] [Abstract][Full Text] [Related]
44. The coalescent in boundary-limited range expansions. Nullmeier J; Hallatschek O Evolution; 2013 May; 67(5):1307-20. PubMed ID: 23617910 [TBL] [Abstract][Full Text] [Related]
45. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Wybouw N; Balabanidou V; Ballhorn DJ; Dermauw W; Grbić M; Vontas J; Van Leeuwen T Insect Biochem Mol Biol; 2012 Dec; 42(12):881-9. PubMed ID: 22960016 [TBL] [Abstract][Full Text] [Related]
46. Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Khila A; Grbić M Dev Genes Evol; 2007 Mar; 217(3):241-51. PubMed ID: 17262226 [TBL] [Abstract][Full Text] [Related]
47. Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae? Agut B; Pastor V; Jaques JA; Flors V Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29466295 [No Abstract] [Full Text] [Related]
48. Mutation surfing and the evolution of dispersal during range expansions. Travis JM; Münkemüller T; Burton OJ J Evol Biol; 2010 Dec; 23(12):2656-67. PubMed ID: 20946371 [TBL] [Abstract][Full Text] [Related]
49. Rapid trait evolution drives increased speed and variance in experimental range expansions. Weiss-Lehman C; Hufbauer RA; Melbourne BA Nat Commun; 2017 Jan; 8():14303. PubMed ID: 28128350 [TBL] [Abstract][Full Text] [Related]
50. Range Expansion Theories Could Shed Light on the Spatial Structure of Intra-tumour Heterogeneity. Gidoin C; Peischl S Bull Math Biol; 2019 Nov; 81(11):4761-4777. PubMed ID: 30535848 [TBL] [Abstract][Full Text] [Related]
51. Effect of the postfeeding interval on olfactory responses of thrips to herbivore-induced cotton plants. Silva R; Walter GH; Wilson LJ; Furlong MJ Insect Sci; 2016 Dec; 23(6):881-892. PubMed ID: 26172119 [TBL] [Abstract][Full Text] [Related]
52. Species- and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. Pinto-Zevallos DM; Bezerra RHS; Souza SR; Ambrogi BG Exp Appl Acarol; 2018 Mar; 74(3):261-274. PubMed ID: 29478090 [TBL] [Abstract][Full Text] [Related]
53. Lack of adaptation to a new host in a generalist herbivore: implications for host plant resistance to twospotted spider mites in cotton. Miyazaki J; Wilson LJ; Stiller WN Pest Manag Sci; 2015 Apr; 71(4):531-6. PubMed ID: 24777962 [TBL] [Abstract][Full Text] [Related]
54. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae. Koveos DS; Suzuki T; Terzidou A; Kokkari A; Floros G; Damos P; Kouloussis NA Exp Appl Acarol; 2017 Jan; 71(1):35-46. PubMed ID: 27988819 [TBL] [Abstract][Full Text] [Related]
55. Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Lind EM; La Pierre KJ; Seabloom EW; Alberti J; Iribarne O; Firn J; Gruner DS; Kay AD; Pascal J; Wright JP; Yang L; Borer ET Ecology; 2017 Dec; 98(12):3022-3033. PubMed ID: 28940315 [TBL] [Abstract][Full Text] [Related]
56. A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore. Ji M; Vandenhole M; De Beer B; De Rouck S; Villacis-Perez E; Feyereisen R; Clark RM; Van Leeuwen T Nat Commun; 2023 Aug; 14(1):4990. PubMed ID: 37591878 [TBL] [Abstract][Full Text] [Related]
57. The influence of interspecific interactions on species range expansion rates. Svenning JC; Gravel D; Holt RD; Schurr FM; Thuiller W; Münkemüller T; Schiffers KH; Dullinger S; Edwards TC; Hickler T; Higgins SI; Nabel JE; Pagel J; Normand S Ecography; 2014 Dec; 37(12):1198-1209. PubMed ID: 25722537 [TBL] [Abstract][Full Text] [Related]
58. Predicting evolution in experimental range expansions of an aquatic model system. Zilio G; Krenek S; Gougat-Barbera C; Fronhofer EA; Kaltz O Evol Lett; 2023 Jun; 7(3):121-131. PubMed ID: 37251588 [TBL] [Abstract][Full Text] [Related]
59. Intrasexual selection: Kin competition increases male-male territorial aggression in a monogamous cichlid fish. Vitt S; Hiller J; Thünken T Ecol Evol; 2020 Oct; 10(20):11183-11191. PubMed ID: 33144958 [TBL] [Abstract][Full Text] [Related]
60. Trapped by habitat choice: Ecological trap emerging from adaptation in an evolutionary experiment. Mortier F; Bonte D Evol Appl; 2020 Sep; 13(8):1877-1887. PubMed ID: 32908592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]