These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 29231169)

  • 21. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis.
    Liu F; Jiang H; Ye S; Chen WP; Liang W; Xu Y; Sun B; Sun J; Wang Q; Cohen JD; Li C
    Cell Res; 2010 May; 20(5):539-52. PubMed ID: 20354503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucosinolate metabolism and its control.
    Grubb CD; Abel S
    Trends Plant Sci; 2006 Feb; 11(2):89-100. PubMed ID: 16406306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A role for TOR signaling at every stage of plant life.
    Quilichini TD; Gao P; Pandey PK; Xiang D; Ren M; Datla R
    J Exp Bot; 2019 Apr; 70(8):2285-2296. PubMed ID: 30911763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement.
    Bakshi A; Moin M; Madhav MS; Kirti PB
    Plant Biol (Stuttg); 2019 Mar; 21(2):190-205. PubMed ID: 30411830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites.
    Malhotra B; Kumar P; Bisht NC
    Plant Cell Environ; 2023 Oct; 46(10):2964-2984. PubMed ID: 36207995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis.
    Burow M; Atwell S; Francisco M; Kerwin RE; Halkier BA; Kliebenstein DJ
    Mol Plant; 2015 Aug; 8(8):1201-12. PubMed ID: 25758208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverse Allyl Glucosinolate Catabolites Independently Influence Root Growth and Development.
    Katz E; Bagchi R; Jeschke V; Rasmussen ARM; Hopper A; Burow M; Estelle M; Kliebenstein DJ
    Plant Physiol; 2020 Jul; 183(3):1376-1390. PubMed ID: 32321840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of TOR Signaling on Photosynthesis.
    Song Y; Alyafei MS; Masmoudi K; Jaleel A; Ren M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells.
    Pacheco JM; Canal MV; Pereyra CM; Welchen E; Martínez-Noël GMA; Estevez JM
    J Exp Bot; 2021 May; 72(11):4085-4101. PubMed ID: 33462577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms.
    Falk KL; Tokuhisa JG; Gershenzon J
    Plant Biol (Stuttg); 2007 Sep; 9(5):573-81. PubMed ID: 17853357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens.
    Gallego B; Martos S; Cabot C; Barceló J; Poschenrieder C
    Physiol Plant; 2017 Apr; 159(4):401-415. PubMed ID: 27734509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensing nutrient and energy status by SnRK1 and TOR kinases.
    Robaglia C; Thomas M; Meyer C
    Curr Opin Plant Biol; 2012 Jun; 15(3):301-7. PubMed ID: 22305521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant TOR signaling components.
    John F; Roffler S; Wicker T; Ringli C
    Plant Signal Behav; 2011 Nov; 6(11):1700-5. PubMed ID: 22057328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TOR coordinates cytokinin and gibberellin signals mediating development and defense.
    Marash I; Gupta R; Anand G; Leibman-Markus M; Lindner N; Israeli A; Nir D; Avni A; Bar M
    Plant Cell Environ; 2024 Feb; 47(2):629-650. PubMed ID: 37904283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation.
    Yu Y; Zhong Z; Ma L; Xiang C; Chen J; Huang XY; Xu P; Xiong Y
    New Phytol; 2022 Nov; 236(4):1326-1338. PubMed ID: 36028982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of plant growth and metabolism by the TOR kinase.
    Dobrenel T; Marchive C; Sormani R; Moreau M; Mozzo M; Montané MH; Menand B; Robaglia C; Meyer C
    Biochem Soc Trans; 2011 Apr; 39(2):477-81. PubMed ID: 21428923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arabidopsis assemble distinct root-associated microbiomes through the synthesis of an array of defense metabolites.
    Kudjordjie EN; Sapkota R; Nicolaisen M
    PLoS One; 2021; 16(10):e0259171. PubMed ID: 34699568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combating stress: the interplay between hormone signaling and autophagy in plants.
    Liao CY; Bassham DC
    J Exp Bot; 2020 Mar; 71(5):1723-1733. PubMed ID: 31725881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens.
    Soprano AS; Smetana JHC; Benedetti CE
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):344-353. PubMed ID: 29222070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Tour of TOR Complex Signaling in Plants.
    Burkart GM; Brandizzi F
    Trends Biochem Sci; 2021 May; 46(5):417-428. PubMed ID: 33309324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.