These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29231177)

  • 1. Hindrances to precise recovery of cellular forces in fibrous biopolymer networks.
    Zhang Y; Feng J; Heizler SI; Levine H
    Phys Biol; 2018 Jan; 15(2):026001. PubMed ID: 29231177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices.
    Cao X; Ban E; Baker BM; Lin Y; Burdick JA; Chen CS; Shenoy VB
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4549-E4555. PubMed ID: 28468803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers.
    Notbohm J; Lesman A; Tirrell DA; Ravichandran G
    Integr Biol (Camb); 2015 Oct; 7(10):1186-95. PubMed ID: 26021600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel inverse finite-element formulation for reconstruction of relative local stiffness in heterogeneous extra-cellular matrix and traction forces on active cells.
    Chen S; Xu W; Kim J; Nan H; Zheng Y; Sun B; Jiao Y
    Phys Biol; 2019 Mar; 16(3):036002. PubMed ID: 30721891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices.
    Malandrino A; Trepat X; Kamm RD; Mak M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006684. PubMed ID: 30958816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
    Checa S; Rausch MK; Petersen A; Kuhl E; Duda GN
    Biomech Model Mechanobiol; 2015 Jan; 14(1):1-13. PubMed ID: 24718853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber alignment in 3D collagen networks as a biophysical marker for cell contractility.
    Böhringer D; Bauer A; Moravec I; Bischof L; Kah D; Mark C; Grundy TJ; Görlach E; O'Neill GM; Budday S; Strissel PL; Strick R; Malandrino A; Gerum R; Mak M; Rausch M; Fabry B
    Matrix Biol; 2023 Dec; 124():39-48. PubMed ID: 37967726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress-induced plasticity of dynamic collagen networks.
    Kim J; Feng J; Jones CAR; Mao X; Sander LM; Levine H; Sun B
    Nat Commun; 2017 Oct; 8(1):842. PubMed ID: 29018207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traction Force Microscopy in 3-Dimensional Extracellular Matrix Networks.
    Cóndor M; Steinwachs J; Mark C; García-Aznar JM; Fabry B
    Curr Protoc Cell Biol; 2017 Jun; 75():10.22.1-10.22.20. PubMed ID: 28627753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex matrix remodeling and durotaxis can emerge from simple rules for cell-matrix interaction in agent-based models.
    Reinhardt JW; Krakauer DA; Gooch KJ
    J Biomech Eng; 2013 Jul; 135(7):71003. PubMed ID: 23722647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational model for collective cellular motion in three dimensions: general framework and case study for cell pair dynamics.
    Frascoli F; Hughes BD; Zaman MH; Landman KA
    PLoS One; 2013; 8(3):e59249. PubMed ID: 23527148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates.
    Giverso C; Arduino A; Preziosi L
    Bull Math Biol; 2018 May; 80(5):1017-1045. PubMed ID: 28409417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber Network Models Predict Enhanced Cell Mechanosensing on Fibrous Gels.
    Aghvami M; Billiar KL; Sander EA
    J Biomech Eng; 2016 Oct; 138(10):1010061-10100611. PubMed ID: 27548709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.
    Kim MC; Silberberg YR; Abeyaratne R; Kamm RD; Asada HH
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E390-E399. PubMed ID: 29295934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry and biomechanics of cell motility.
    Li S; Guan JL; Chien S
    Annu Rev Biomed Eng; 2005; 7():105-50. PubMed ID: 16004568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional force microscopy of cells in biopolymer networks.
    Steinwachs J; Metzner C; Skodzek K; Lang N; Thievessen I; Mark C; Münster S; Aifantis KE; Fabry B
    Nat Methods; 2016 Feb; 13(2):171-6. PubMed ID: 26641311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Traction Microscopy with a Fiber-Based Constitutive Model.
    Song D; Hugenberg N; Oberai AA
    Comput Methods Appl Mech Eng; 2019 Dec; 357():. PubMed ID: 32831420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic cell force-migration coupling on aligned fiber networks.
    Hernandez-Padilla C; Joosten B; Franco A; Cambi A; van den Dries K; Nain AS
    Biophys J; 2024 Sep; 123(18):3120-3132. PubMed ID: 38993114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live-cell imaging of migrating cells expressing fluorescently-tagged proteins in a three-dimensional matrix.
    Shih W; Yamada S
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22215133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.
    Pedersen JA; Lichter S; Swartz MA
    J Biomech; 2010 Mar; 43(5):900-5. PubMed ID: 20006339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.