These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 29231182)
1. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates. Afferrante L; Carbone G J Phys Condens Matter; 2018 Jan; 30(4):045001. PubMed ID: 29231182 [TBL] [Abstract][Full Text] [Related]
2. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity. Bottiglione F; Carbone G Langmuir; 2013 Jan; 29(2):599-609. PubMed ID: 23210830 [TBL] [Abstract][Full Text] [Related]
3. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
4. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces. Bottiglione F; Carbone G J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488 [TBL] [Abstract][Full Text] [Related]
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
6. Statistical theory of wetting of liquid drops on superhydrophobic randomly rough surfaces. Afferrante L; Carbone G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042407. PubMed ID: 26565257 [TBL] [Abstract][Full Text] [Related]
7. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812 [TBL] [Abstract][Full Text] [Related]
8. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. Promraksa A; Chuang YC; Chen LJ J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812 [TBL] [Abstract][Full Text] [Related]
9. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect. Lin HP; Chen LJ J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950 [TBL] [Abstract][Full Text] [Related]
10. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets. Zahiri B; Sow PK; Kung CH; Mérida W J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883 [TBL] [Abstract][Full Text] [Related]
11. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F; Monson PA Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079 [TBL] [Abstract][Full Text] [Related]
13. Microscopic description of a drop on a solid surface. Ruckenstein E; Berim GO Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobic properties of a wavy rough substrate. Carbone G; Mangialardi L Eur Phys J E Soft Matter; 2005 Jan; 16(1):67-76. PubMed ID: 15688142 [TBL] [Abstract][Full Text] [Related]
15. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
16. Transition between superhydrophobic states on rough surfaces. Patankar NA Langmuir; 2004 Aug; 20(17):7097-102. PubMed ID: 15301493 [TBL] [Abstract][Full Text] [Related]
17. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces. Vaikuntanathan V; Sivakumar D Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648 [TBL] [Abstract][Full Text] [Related]
18. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Shigorina E; Kordilla J; Tartakovsky AM Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium contact angles of liquid droplets on ideal rough solids. Kang HC; Jacobi AM Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925 [TBL] [Abstract][Full Text] [Related]
20. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces. Milne AJ; Elliott JA; Zabeti P; Zhou J; Amirfazli A Phys Chem Chem Phys; 2011 Sep; 13(36):16208-19. PubMed ID: 21822523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]