These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29231710)

  • 1. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene.
    Chen L; Wu D; Yoon J
    ACS Sens; 2018 Jan; 3(1):27-43. PubMed ID: 29231710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Single Fluorescent Chemosensor for Simultaneous Discriminative Detection of Gaseous Phosgene and a Nerve Agent Mimic.
    Zeng L; Zeng H; Jiang L; Wang S; Hou JT; Yoon J
    Anal Chem; 2019 Sep; 91(18):12070-12076. PubMed ID: 31414590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fluorescent Sensor for Dual-Channel Discrimination between Phosgene and a Nerve-Gas Mimic.
    Zhou X; Zeng Y; Liyan C; Wu X; Yoon J
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4729-33. PubMed ID: 26938275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A FRET approach to phosgene detection.
    Zhang H; Rudkevich DM
    Chem Commun (Camb); 2007 Mar; (12):1238-9. PubMed ID: 17356768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century.
    Kumar V; Kim H; Pandey B; James TD; Yoon J; Anslyn EV
    Chem Soc Rev; 2023 Jan; 52(2):663-704. PubMed ID: 36546880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sea-dumped chemical weapons: environmental risk, occupational hazard.
    Greenberg MI; Sexton KJ; Vearrier D
    Clin Toxicol (Phila); 2016; 54(2):79-91. PubMed ID: 26692048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative determination of phosgene doses by reflectometric badge readout.
    Niessner R
    Anal Bioanal Chem; 2010 Jul; 397(6):2285-8. PubMed ID: 20473481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and sensitive method for visual detection of phosgene based on the aggregation of gold nanoparticles.
    Feng D; Zhang Y; Shi W; Li X; Ma H
    Chem Commun (Camb); 2010 Dec; 46(48):9203-5. PubMed ID: 21031186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Study of Phosgene Gas Sensing Using Carbon and Boron Nitride Nanomaterials-A DFT Approach.
    Kweitsu EO; Armoo SK; Kan-Dapaah K; Abavare EKK; Dodoo-Arhin D; Yaya A
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33383916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of chemical warfare agents III. Use of bis-nucleophiles in the trace level determination of phosgene and perfluoroisobutylene.
    Muir B; Cooper DB; Carrick WA; Timperley CM; Slater BJ; Quick S
    J Chromatogr A; 2005 Dec; 1098(1-2):156-65. PubMed ID: 16314173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional Fluorescent Probes for the Detection of Mustard Gas and Phosgene.
    Feng W; Liu XJ; Xue MJ; Song QH
    Anal Chem; 2023 Jan; 95(2):1755-1763. PubMed ID: 36596643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Strategy for Colorimetric and Fluorescence Sensing of Phosgene Based on Small Organic Dyes and Nanofiber Platforms.
    Hu Y; Chen L; Jung H; Zeng Y; Lee S; Swamy KM; Zhou X; Kim MH; Yoon J
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22246-52. PubMed ID: 27498559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of fluorescent phosgene sensors.
    Kundu P; Hwang KC
    Anal Chem; 2012 May; 84(10):4594-7. PubMed ID: 22486254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile dual-function fluorescent probe for detection of phosgene and nitrite and its applications in portable chemosensor analysis and food analysis.
    Yang L; Wang F; Zhao J; Kong X; Lu K; Yang M; Zhang J; Sun Z; You J
    Talanta; 2021 Jan; 221():121477. PubMed ID: 33076090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive and Visual Detection of Phosgene by a TICT-Based BODIPY Dye with 8-(o-Hydroxy)aniline as the Active Site.
    Fu YL; Chong YY; Li H; Feng W; Song QH
    Chemistry; 2021 Mar; 27(15):4977-4984. PubMed ID: 33400318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BODIPY-Based Fluorescent Sensor for the Recognization of Phosgene in Solutions and in Gas Phase.
    Xia HC; Xu XH; Song QH
    Anal Chem; 2017 Apr; 89(7):4192-4197. PubMed ID: 28252931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors.
    Zhang SW; Swager TM
    J Am Chem Soc; 2003 Mar; 125(12):3420-1. PubMed ID: 12643690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a ratiometric phosgene probe by chromophore formation from auxochrome.
    Ni JY; Qian DL; Sun R; Qin CX; Ge JF
    Talanta; 2022 Jan; 236():122826. PubMed ID: 34635216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAW Chemical Array Device Coated with Polymeric Sensing Materials for the Detection of Nerve Agents.
    Kim J; Park H; Kim J; Seo BI; Kim JH
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.