These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29231720)

  • 1. Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism.
    Hsu C; Wu BY; Chang YC; Chang CF; Chiou TY; Su NW
    J Agric Food Chem; 2018 Jan; 66(1):127-137. PubMed ID: 29231720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of succinyl genistin and succinyl daidzin by Bacillus species.
    Park CU; Jeong MK; Park MH; Yeu J; Park MS; Kim MJ; Ahn SM; Chang PS; Lee J
    J Food Sci; 2010; 75(1):C128-33. PubMed ID: 20492143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18.
    Kuo LC; Wu RY; Lee KT
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1181-8. PubMed ID: 22350317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet.
    Toda T; Uesugi T; Hirai K; Nukaya H; Tsuji K; Ishida H
    Biol Pharm Bull; 1999 Nov; 22(11):1193-201. PubMed ID: 10598027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans.
    Wu Q; Wang M; Sciarappa WJ; Simon JE
    J Agric Food Chem; 2004 May; 52(10):2763-9. PubMed ID: 15137811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of soy isoflavones and screening for novel malonyl glycosides using high-performance liquid chromatography-electrospray ionisation-mass spectrometry.
    Gu L; Gu W
    Phytochem Anal; 2001; 12(6):377-82. PubMed ID: 11793816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein.
    Kulling SE; Honig DM; Simat TJ; Metzler M
    J Agric Food Chem; 2000 Oct; 48(10):4963-72. PubMed ID: 11052763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma profiling of intact isoflavone metabolites by high-performance liquid chromatography and mass spectrometric identification of flavone glycosides daidzin and genistin in human plasma after administration of kinako.
    Hosoda K; Furuta T; Yokokawa A; Ogura K; Hiratsuka A; Ishii K
    Drug Metab Dispos; 2008 Aug; 36(8):1485-95. PubMed ID: 18443032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of isoflavone profiles in a fermented soy food with almond powder.
    Park M; Jeong MK; Kim M; Lee J
    J Food Sci; 2012 Jan; 77(1):C128-34. PubMed ID: 22182181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soy Isoflavones and their Effects on Xenobiotic Metabolism.
    Zhou T; Meng C; He P
    Curr Drug Metab; 2019; 20(1):46-53. PubMed ID: 29708073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel isoflavone glucosides in groundnut (Apios americana Medik) and their antiandrogenic activities.
    Ichige M; Fukuda E; Miida S; Hattan J; Misawa N; Saito S; Fujimaki T; Imoto M; Shindo K
    J Agric Food Chem; 2013 Mar; 61(9):2183-7. PubMed ID: 23402539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and identification of isoflavonoid glycosides in the root of Spiny restharrow (Ononis spinosa L.) by HPLC-QTOF-MS, HPLC-MS/MS and NMR.
    Gampe N; Darcsi A; Lohner S; Béni S; Kursinszki L
    J Pharm Biomed Anal; 2016 May; 123():74-81. PubMed ID: 26874257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: a cross-species and sex comparison.
    Soukup ST; Helppi J; Müller DR; Zierau O; Watzl B; Vollmer G; Diel P; Bub A; Kulling SE
    Arch Toxicol; 2016 Jun; 90(6):1335-47. PubMed ID: 26838042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary isoflavone absorption, excretion, and metabolism in captive cheetahs (Acinonyx jubatus).
    Whitehouse-Tedd KM; Cave NJ; Ugarte CE; Waldron LA; Prasain JK; Arabshahi A; Barnes S; Thomas DG
    J Zoo Wildl Med; 2011 Dec; 42(4):658-70. PubMed ID: 22204061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Glycosylation of Daidzein, Genistein and Biochanin A: Two New Glucosides of Biochanin A.
    Sordon S; Popłoński J; Tronina T; Huszcza E
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28054950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and quantification of daidzein-7-glucuronide-4'-sulfate, genistein-7-glucuronide-4'-sulfate and genistein-4',7-diglucuronide as major metabolites in human plasma after administration of kinako.
    Hosoda K; Furuta T; Yokokawa A; Ishii K
    Anal Bioanal Chem; 2010 Jun; 397(4):1563-72. PubMed ID: 20437034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine.
    Matthies A; Clavel T; Gütschow M; Engst W; Haller D; Blaut M; Braune A
    Appl Environ Microbiol; 2008 Aug; 74(15):4847-52. PubMed ID: 18539813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the in vitro intestinal metabolism of isoflavones aid in the identification of their urinary metabolites.
    Heinonen SM; Wähälä K; Liukkonen KH; Aura AM; Poutanen K; Adlercreutz H
    J Agric Food Chem; 2004 May; 52(9):2640-6. PubMed ID: 15113171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling and identification of the metabolites of calycosin in rat hepatic 9000×g supernatant incubation system and the metabolites of calycosin-7-O-β-D-glucoside in rat urine by HPLC-DAD-ESI-IT-TOF-MS(n) technique.
    Zhang YZ; Xu F; Dong J; Liang J; Hashi Y; Shang MY; Yang DH; Wang X; Cai SQ
    J Pharm Biomed Anal; 2012 Nov; 70():425-39. PubMed ID: 22766358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-specific metabolism of flavonol molecules by Bacillus subtilis var. natto BCRC 80517.
    Wang CW; Tsai HY; Hsu C; Hsieh CC; Wang IS; Chang CF; Su NW
    Food Chem; 2024 Jan; 430():136975. PubMed ID: 37549625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.