BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 29231777)

  • 1. Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland.
    Pegg G; Taylor T; Entwistle P; Guymer G; Giblin F; Carnegie A
    PLoS One; 2017; 12(11):e0188058. PubMed ID: 29161305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of plant and fungal transcripts from resistant and susceptible phenotypes of
    Frampton RA; Shuey LS; David CC; Pringle GM; Kalamorz F; Pegg GS; Chagné D; Smith GR
    Phytopathology; 2024 Jun; ():. PubMed ID: 38875168
    [No Abstract]   [Full Text] [Related]  

  • 3.
    Ebinghaus M; Gasparotto L; Martins JMT; Santos MDMD; Tessman DJ; Barros-Cordeiro KB; Pinho DB; Dianese JC
    Mycologia; 2024; 116(3):418-430. PubMed ID: 38530332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a lasting resource for smart breeding.
    Almeida NF; Leitão ST; Krezdorn N; Rotter B; Winter P; Rubiales D; Vaz Patto MC
    BMC Plant Biol; 2014 Dec; 14():376. PubMed ID: 25522779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the high variability on nonconserved core and mobile elements of Austropuccinia psidii and other rust mitochondrial genomes.
    de Almeida JR; Riaño Pachón DM; Franceschini LM; Dos Santos IB; Ferrarezi JA; de Andrade PAM; Monteiro-Vitorello CB; Labate CA; Quecine MC
    PLoS One; 2021; 16(3):e0248054. PubMed ID: 33705433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Myrtle rust pathogen, Puccinia psidii, discovered in Africa.
    Roux J; Greyling I; Coutinho TA; Verleur M; Wingfield MJ
    IMA Fungus; 2013 Jul; 4(1):155-9. PubMed ID: 23898420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryphonectriaceae associated with rust-infected
    Roux J; Kamgan Nkuekam G; Marincowitz S; van der Merwe NA; Uchida J; Wingfield MJ; Chen S
    MycoKeys; 2020; 76():49-79. PubMed ID: 33505197
    [No Abstract]   [Full Text] [Related]  

  • 8. A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes.
    Chen SH; Martino AM; Luo Z; Schwessinger B; Jones A; Tolessa T; Bragg JG; Tobias PA; Edwards RJ
    Gigascience; 2022 Dec; 12():. PubMed ID: 38096477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of terpene biosynthesis in
    Hsieh JF; Krause ST; Kainer D; Degenhardt J; Foley WJ; Külheim C
    Plant Environ Interact; 2021 Aug; 2(4):177-193. PubMed ID: 37283700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both Constitutive and Infection-Responsive Secondary Metabolites Linked to Resistance against
    Moffitt MC; Wong-Bajracharya J; Shuey LS; Park RF; Pegg GS; Plett JM
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208838
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing.
    Dorostkar S; Dadkhodaie A; Ebrahimie E; Heidari B; Ahmadi-Kordshooli M
    Sci Rep; 2022 Jan; 12(1):821. PubMed ID: 35039525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements.
    Tobias PA; Schwessinger B; Deng CH; Wu C; Dong C; Sperschneider J; Jones A; Lou Z; Zhang P; Sandhu K; Smith GR; Tibbits J; Chagné D; Park RF
    G3 (Bethesda); 2021 Apr; 11(3):. PubMed ID: 33793741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome Profiling of Melaleuca quinquenervia Challenged by Myrtle Rust Reveals Differences in Defense Responses Among Resistant Individuals.
    Hsieh JF; Chuah A; Patel HR; Sandhu KS; Foley WJ; Külheim C
    Phytopathology; 2018 Apr; 108(4):495-509. PubMed ID: 29135360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of Eucalyptus grandis genotypes reveals constitutive overexpression of genes related to rust (Austropuccinia psidii) resistance.
    Santos SA; Vidigal PMP; Guimarães LMS; Mafia RG; Templeton MD; Alfenas AC
    Plant Mol Biol; 2020 Nov; 104(4-5):339-357. PubMed ID: 32638297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The In Planta Gene Expression of
    Swanepoel S; Visser EA; Shuey LS; Naidoo S
    Phytopathology; 2023 Jun; 113(6):1066-1076. PubMed ID: 36611233
    [No Abstract]   [Full Text] [Related]  

  • 16. A curious case of resistance to a new encounter pathogen: myrtle rust in Australia.
    Tobias PA; Guest DI; Külheim C; Hsieh JF; Park RF
    Mol Plant Pathol; 2016 Jun; 17(5):783-8. PubMed ID: 26575410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons from the Incursion of Myrtle Rust in Australia.
    Carnegie AJ; Pegg GS
    Annu Rev Phytopathol; 2018 Aug; 56():457-478. PubMed ID: 29975606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Transcriptome Study Identifies Candidate Genes Involved in Resistance to Austropuccinia psidii (Myrtle Rust) in Syzygium luehmannii (Riberry).
    Tobias PA; Guest DI; Külheim C; Park RF
    Phytopathology; 2018 May; 108(5):627-640. PubMed ID: 29231777
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.