These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29231850)

  • 1. Rational Design Approach for Enhancing Higher-Mode Response of a Microcantilever in Vibro-Impacting Mode.
    Migliniene I; Ostasevicius V; Gaidys R; Dauksevicius R; Janusas G; Jurenas V; Krasauskas P
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29231850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.
    Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.
    Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L
    Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.
    Žižys D; Gaidys R; Ostaševičius V; Narijauskaitė B
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28448472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Efficiency of a Piezoelectric Energy Harvester under Combined Aeroelastic and Base Excitation.
    Stamatellou AM; Kalfas AI
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration Energy Harvesting by Means of Piezoelectric Patches: Application to Aircrafts.
    Tommasino D; Moro F; Bernay B; De Lumley Woodyear T; de Pablo Corona E; Doria A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments.
    Zhang X; Yang W; Zuo M; Tan H; Fan H; Mao Q; Wan X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale cutting using self-excited microcantilever.
    Yang R; Ogura I; Jiang Z; An L; Ashida K; Yabuno H
    Sci Rep; 2022 Jan; 12(1):618. PubMed ID: 35022414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Design of a Quad-Stable Piezoelectric Energy Harvester via Bifurcation Theory.
    Zhang Q; Yan Y; Han J; Hao S; Wang W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive and Robust Operation with Active Fuzzy Harvester under Nonstationary and Random Disturbance Conditions.
    Hara Y; Otsuka K; Makihara K
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.
    Li X; Guo M; Dong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):698-703. PubMed ID: 21507747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Experimental Investigation of an Ultra-Low Frequency, Low-Intensity, and Multidirectional Piezoelectric Energy Harvester with Liquid as the Energy-Capture Medium.
    Li N; Yang F; Luo T; Qin L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices.
    Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter.
    Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy.
    Zhou Z; Zhang H; Qin W; Zhu P; Wang P; Du W
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.