These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2923200)

  • 1. Two distinct mechanisms are responsible for single K channel block by internal tetraethylammonium ions.
    Yamamoto D; Suzuki N
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C683-7. PubMed ID: 2923200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unitary delayed rectifier channels of rat hippocampal neurons: properties of block by external tetraethylammonium ions.
    Linsdell P; Stanfield PR
    Pflugers Arch; 1993 Oct; 425(1-2):41-53. PubMed ID: 8272383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic beta-cells.
    Bokvist K; Rorsman P; Smith PA
    J Physiol; 1990 Apr; 423():311-25. PubMed ID: 2201760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium activates two types of potassium channels in rat hippocampal neurons in culture.
    Lancaster B; Nicoll RA; Perkel DJ
    J Neurosci; 1991 Jan; 11(1):23-30. PubMed ID: 1986065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions.
    Langton PD; Nelson MT; Huang Y; Standen NB
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H927-34. PubMed ID: 1900393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple blocking mechanisms of ATP-sensitive potassium channels of frog skeletal muscle by tetraethylammonium ions.
    Davies NW; Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1989 Jun; 413():31-48. PubMed ID: 2600853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of internal and external tetraethylammonium block in four homologous K+ channels.
    Taglialatela M; Vandongen AM; Drewe JA; Joho RH; Brown AM; Kirsch GE
    Mol Pharmacol; 1991 Aug; 40(2):299-307. PubMed ID: 1875913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of single non-inactivating potassium channels in primary neuronal cultures of Drosophila.
    Yamamoto D; Suzuki N
    J Exp Biol; 1989 Sep; 145():173-84. PubMed ID: 2509622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The action of capsaicin on type I delayed rectifier K+ currents in rabbit Schwann cells.
    Baker MD; Ritchie JM
    Proc Biol Sci; 1994 Mar; 255(1344):259-65. PubMed ID: 8022842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of permeating ions on potassium channel block by external tetraethylammonium.
    Ikeda SR; Korn SJ
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):267-72. PubMed ID: 7473194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ba2+, TEA+, and quinine effects on apical membrane K+ conductance and maxi K+ channels in gallbladder epithelium.
    Segal Y; Reuss L
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C56-68. PubMed ID: 2372050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal and external TEA block in single cloned K+ channels.
    Kirsch GE; Taglialatela M; Brown AM
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C583-90. PubMed ID: 1928322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The action of external tetraethylammonium ions on unitary delayed rectifier potassium channels of frog skeletal muscle.
    Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1987 Dec; 393():467-78. PubMed ID: 2451742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A voltage-dependent and a voltage-independent potassium channel in brown adipocytes of the rat.
    Russ U; Ringer T; Siemen D
    Biochim Biophys Acta; 1993 Dec; 1153(2):249-56. PubMed ID: 8274494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A TEA-insensitive flickering potassium channel active around the resting potential in myelinated nerve.
    Koh DS; Jonas P; Bräu ME; Vogel W
    J Membr Biol; 1992 Nov; 130(2):149-62. PubMed ID: 1291683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A site accessible to extracellular TEA+ and K+ influences intracellular Mg2+ block of cloned potassium channels.
    Ludewig U; Lorra C; Pongs O; Heinemann SH
    Eur Biophys J; 1993; 22(4):237-47. PubMed ID: 8253052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.
    MacKinnon R; Yellen G
    Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-channel K+ currents in Drosophila muscle and their pharmacological block.
    Gorczyca MG; Wu CF
    J Membr Biol; 1991 May; 121(3):237-48. PubMed ID: 1865488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two types of A-channels in Lymnaea neurons.
    Alekseev SI; Ziskin MC
    J Membr Biol; 1995 Aug; 146(3):327-41. PubMed ID: 8568847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.
    Yellen G; Jurman ME; Abramson T; MacKinnon R
    Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.