These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 29232017)
41. Single-particle cryo-EM studies of transmembrane proteins in SMA copolymer nanodiscs. Sun C; Gennis RB Chem Phys Lipids; 2019 Jul; 221():114-119. PubMed ID: 30940443 [TBL] [Abstract][Full Text] [Related]
42. A Split-Intein-Based Method for the Efficient Production of Circularized Nanodiscs for Structural Studies of Membrane Proteins. Miehling J; Goricanec D; Hagn F Chembiochem; 2018 Sep; 19(18):1927-1933. PubMed ID: 29947468 [TBL] [Abstract][Full Text] [Related]
43. Multisite interactions of prions with membranes and native nanodiscs. Overduin M; Wille H; Westaway D Chem Phys Lipids; 2021 May; 236():105063. PubMed ID: 33600804 [TBL] [Abstract][Full Text] [Related]
44. Large Nanodiscs: A Potential Game Changer in Structural Biology of Membrane Protein Complexes and Virus Entry. Padmanabha Das KM; Shih WM; Wagner G; Nasr ML Front Bioeng Biotechnol; 2020; 8():539. PubMed ID: 32596222 [TBL] [Abstract][Full Text] [Related]
45. Nanoscale Model System for the Human Myelin Sheath. Hoffmann M; Haselberger D; Hofmann T; Müller L; Janson K; Meister A; Das M; Vargas C; Keller S; Kastritis PL; Schmidt C; Hinderberger D Biomacromolecules; 2021 Sep; 22(9):3901-3912. PubMed ID: 34324309 [TBL] [Abstract][Full Text] [Related]
49. Membrane interaction and selectivity of novel alternating cationic lipid-nanodisc assembling polymers. Farrelly MD; Zhai J; Tiong AYJ; van 't Hag L; Yu HH; Li J; Martin LL; Thang SH Biomater Sci; 2023 Aug; 11(17):5955-5969. PubMed ID: 37477383 [TBL] [Abstract][Full Text] [Related]
50. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity. Wadsäter M; Barker R; Mortensen K; Feidenhans'l R; Cárdenas M Langmuir; 2013 Mar; 29(9):2871-80. PubMed ID: 23373466 [TBL] [Abstract][Full Text] [Related]
51. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM. Efremov RG; Gatsogiannis C; Raunser S Methods Enzymol; 2017; 594():1-30. PubMed ID: 28779836 [TBL] [Abstract][Full Text] [Related]
52. Polymer-Nanodiscs as a Novel Alignment Medium for High-Resolution NMR-Based Structural Studies of Nucleic Acids. Krishnarjuna B; Ravula T; Faison EM; Tonelli M; Zhang Q; Ramamoorthy A Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36358983 [TBL] [Abstract][Full Text] [Related]
53. Nanodiscs for Structural Biology in a Membranous Environment. Yokogawa M; Fukuda M; Osawa M Chem Pharm Bull (Tokyo); 2019; 67(4):321-326. PubMed ID: 30930435 [TBL] [Abstract][Full Text] [Related]
54. Controlling Styrene Maleic Acid Lipid Particles through RAFT. Smith AAA; Autzen HE; Laursen T; Wu V; Yen M; Hall A; Hansen SD; Cheng Y; Xu T Biomacromolecules; 2017 Nov; 18(11):3706-3713. PubMed ID: 28934548 [TBL] [Abstract][Full Text] [Related]
55. From polymer chemistry to structural biology: The development of SMA and related amphipathic polymers for membrane protein extraction and solubilisation. Bada Juarez JF; Harper AJ; Judge PJ; Tonge SR; Watts A Chem Phys Lipids; 2019 Jul; 221():167-175. PubMed ID: 30940445 [TBL] [Abstract][Full Text] [Related]
56. Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs. Broecker J; Eger BT; Ernst OP Structure; 2017 Feb; 25(2):384-392. PubMed ID: 28089451 [TBL] [Abstract][Full Text] [Related]
57. A comparative characterisation of commercially available lipid-polymer nanoparticles formed from model membranes. Sawczyc H; Heit S; Watts A Eur Biophys J; 2023 Feb; 52(1-2):39-51. PubMed ID: 36786921 [TBL] [Abstract][Full Text] [Related]