These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29232106)

  • 21. Efficient Sodium Storage in Rolled-Up Amorphous Si Nanomembranes.
    Huang S; Liu L; Zheng Y; Wang Y; Kong D; Zhang Y; Shi Y; Zhang L; Schmidt OG; Yang HY
    Adv Mater; 2018 May; 30(20):e1706637. PubMed ID: 29603455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unique Double-Interstitialcy Mechanism and Interfacial Storage Mechanism in the Graphene/Metal Oxide as the Anode for Sodium-Ion Batteries.
    Wang T; Qu J; Legut D; Qin J; Li X; Zhang Q
    Nano Lett; 2019 May; 19(5):3122-3130. PubMed ID: 30884241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic visualization of a non-equilibrium sodiation pathway in copper sulfide.
    Park JY; Kim SJ; Chang JH; Seo HK; Lee JY; Yuk JM
    Nat Commun; 2018 Mar; 9(1):922. PubMed ID: 29500359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte.
    Han M; Zhu C; Zhao Q; Chen C; Tao Z; Xie W; Cheng F; Chen J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28620-28626. PubMed ID: 28809533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast Ionic Liquid-Assisted Microwave Synthesis of SnO Microflowers and Their Superior Sodium-Ion Storage Performance.
    Qin B; Zhang H; Diemant T; Geiger D; Raccichini R; Behm RJ; Kaiser U; Varzi A; Passerini S
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26797-26804. PubMed ID: 28731318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.
    Allan PK; Griffin JM; Darwiche A; Borkiewicz OJ; Wiaderek KM; Chapman KW; Morris AJ; Chupas PJ; Monconduit L; Grey CP
    J Am Chem Soc; 2016 Feb; 138(7):2352-65. PubMed ID: 26824406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithiation and Sodiation of Hydrogenated Silicene: A Density Functional Theory Investigation.
    Rehman J; Fan X; Samad A; Zheng W
    ChemSusChem; 2021 Dec; 14(24):5460-5469. PubMed ID: 34590444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries.
    Hembram KP; Jung H; Yeo BC; Pai SJ; Lee HJ; Lee KR; Han SS
    Phys Chem Chem Phys; 2016 Aug; 18(31):21391-7. PubMed ID: 27425818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ transmission electron microscopy observation of electrochemical sodiation of individual Co₉S₈-filled carbon nanotubes.
    Su Q; Du G; Zhang J; Zhong Y; Xu B; Yang Y; Neupane S; Li W
    ACS Nano; 2014 Apr; 8(4):3620-7. PubMed ID: 24611818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode.
    Haldar S; Kaleeswaran D; Rase D; Roy K; Ogale S; Vaidhyanathan R
    Nanoscale Horiz; 2020 Aug; 5(8):1264-1273. PubMed ID: 32647840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of sodiation in anatase TiO
    Tong Z; Kang T; Wu J; Yang R; Wu Y; Lian R; Wang H; Tang Y; Lee CS
    Nanoscale Adv; 2021 Aug; 3(16):4702-4713. PubMed ID: 36134310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tin-coated viral nanoforests as sodium-ion battery anodes.
    Liu Y; Xu Y; Zhu Y; Culver JN; Lundgren CA; Xu K; Wang C
    ACS Nano; 2013 Apr; 7(4):3627-34. PubMed ID: 23484633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries.
    Nam DH; Kim TH; Hong KS; Kwon HS
    ACS Nano; 2014 Nov; 8(11):11824-35. PubMed ID: 25350724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic Insight into Ultrafast Kinetics of Sodium Cointercalation in Few-Layer Graphitic Carbon.
    Wang J; Wang H; Zhao R; Wei Y; Kang F; Zhai D
    Nano Lett; 2022 Aug; 22(15):6359-6365. PubMed ID: 35914192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Assembly of Pulverized Nanoparticles: An Approach to Realize Large-Capacity, Long-Lasting, and Ultra-Fast-Chargeable Na-Ion Batteries.
    Park JH; Choi YS; Kim C; Byeon YW; Kim Y; Lee BJ; Ahn JP; Ahn H; Lee JC
    Nano Lett; 2021 Nov; 21(21):9044-9051. PubMed ID: 34714657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries.
    Kalubarme RS; Lee JY; Park CJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17226-37. PubMed ID: 26186401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance.
    Shin HS; Jung KN; Jo YN; Park MS; Kim H; Lee JW
    Sci Rep; 2016 May; 6():26195. PubMed ID: 27189834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boron-doped graphene as a promising anode for Na-ion batteries.
    Ling C; Mizuno F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10419-24. PubMed ID: 24760182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.
    Xiao B; Li YC; Yu XF; Cheng JB
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35342-35352. PubMed ID: 27977126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.