These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29232106)

  • 41.
    Wang X; Yao Z; Hwang S; Pan Y; Dong H; Fu M; Li N; Sun K; Gan H; Yao Y; Aspuru-Guzik A; Xu Q; Su D
    ACS Nano; 2019 Aug; 13(8):9421-9430. PubMed ID: 31386342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exceptionally Reversible Li-/Na-Ion Storage and Ultrastable Solid-Electrolyte Interphase in Layered GeP
    Haghighat-Shishavan S; Nazarian-Samani M; Nazarian-Samani M; Roh HK; Chung KY; Oh SH; Cho BW; Kashani-Bozorg SF; Kim KB
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32815-32825. PubMed ID: 31408311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.
    Putungan DB; Lin SH; Kuo JL
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18754-62. PubMed ID: 27373121
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical mesoporous SnO microspheres as high capacity anode materials for sodium-ion batteries.
    Su D; Xie X; Wang G
    Chemistry; 2014 Mar; 20(11):3192-7. PubMed ID: 24522961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries.
    Gu M; Kushima A; Shao Y; Zhang JG; Liu J; Browning ND; Li J; Wang C
    Nano Lett; 2013 Nov; 13(11):5203-11. PubMed ID: 24079296
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanistic Insight into the Stability of HfO2 -Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries.
    Ahmed B; Anjum DH; Hedhili MN; Alshareef HN
    Small; 2015 Sep; 11(34):4341-50. PubMed ID: 26061915
    [TBL] [Abstract][Full Text] [Related]  

  • 48. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SnS
    Zhou P; Wang X; Guan W; Zhang D; Fang L; Jiang Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6979-6987. PubMed ID: 28103016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers.
    Liu Y; Fan F; Wang J; Liu Y; Chen H; Jungjohann KL; Xu Y; Zhu Y; Bigio D; Zhu T; Wang C
    Nano Lett; 2014 Jun; 14(6):3445-52. PubMed ID: 24823874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NiSi(x)/a-Si Nanowires with Interfacial a-Ge as Anodes for High-Rate Lithium-Ion Batteries.
    Han X; Chen H; Li X; Lai S; Xu Y; Li C; Chen S; Yang Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):673-9. PubMed ID: 26670955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode.
    Weng YT; Huang TY; Lim CH; Shao PS; Hy S; Kuo CY; Cheng JH; Hwang BJ; Lee JF; Wu NL
    Nanoscale; 2015 Dec; 7(47):20075-81. PubMed ID: 26567463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interfacial Reactions in the Li/Si diffusion couples: Origin of Anisotropic Lithiation of Crystalline Si in Li-Si batteries.
    Choi YS; Park JH; Ahn JP; Lee JC
    Sci Rep; 2017 Oct; 7(1):14028. PubMed ID: 29070873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular dynamics simulations of the first charge of a Li-ion-Si-anode nanobattery.
    Galvez-Aranda DE; Ponce V; Seminario JM
    J Mol Model; 2017 Apr; 23(4):120. PubMed ID: 28303437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding the Lithiation of the Sn Anode for High-Performance Li-Ion Batteries with Exploration of Novel Li-Sn Compounds at Ambient and Moderately High Pressure.
    Sen R; Johari P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40197-40206. PubMed ID: 29069896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation.
    He K; Lin F; Zhu Y; Yu X; Li J; Lin R; Nordlund D; Weng TC; Richards RM; Yang XQ; Doeff MM; Stach EA; Mo Y; Xin HL; Su D
    Nano Lett; 2015 Sep; 15(9):5755-63. PubMed ID: 26288360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic resolution observation of conversion-type anode RuO₂ during the first electrochemical lithiation.
    Mao M; Nie A; Liu J; Wang H; Mao SX; Wang Q; Li K; Zhang XX
    Nanotechnology; 2015 Mar; 26(12):125404. PubMed ID: 25742426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries.
    He K; Zhou Y; Gao P; Wang L; Pereira N; Amatucci GG; Nam KW; Yang XQ; Zhu Y; Wang F; Su D
    ACS Nano; 2014 Jul; 8(7):7251-9. PubMed ID: 24911154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy.
    Yuk JM; Seo HK; Choi JW; Lee JY
    ACS Nano; 2014 Jul; 8(7):7478-85. PubMed ID: 24980889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.