These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 29232300)
1. Three-Dimensional Printing of Life-Like Models for Simulation and Training of Minimally Invasive Cardiac Surgery. Yamada T; Osako M; Uchimuro T; Yoon R; Morikawa T; Sugimoto M; Suda H; Shimizu H Innovations (Phila); 2017; 12(6):459-465. PubMed ID: 29232300 [TBL] [Abstract][Full Text] [Related]
2. Replicated mitral valve models from real patients offer training opportunities for minimally invasive mitral valve repair. Engelhardt S; Sauerzapf S; Brčić A; Karck M; Wolf I; De Simone R Interact Cardiovasc Thorac Surg; 2019 Jul; 29(1):43-50. PubMed ID: 30783681 [TBL] [Abstract][Full Text] [Related]
3. How to assemble a low-fidelity simulator for minimally invasive mitral valve surgery. Moscarelli M; Di Bari N; Bonifazi R; Salardino M; De Donatis T; Nasso G; Speziale G Multimed Man Cardiothorac Surg; 2019 Apr; 2019():. PubMed ID: 31219686 [TBL] [Abstract][Full Text] [Related]
4. Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training. Chen SA; Ong CS; Malguria N; Vricella LA; Garcia JR; Hibino N World J Pediatr Congenit Heart Surg; 2018 Jul; 9(4):454-458. PubMed ID: 29945510 [TBL] [Abstract][Full Text] [Related]
5. Design and training effects of a physical reality simulator for minimally invasive mitral valve surgery. Jebran AF; Saha S; Waezi N; Al-Ahmad A; Niehaus H; Danner BC; Baraki H; Kutschka I Interact Cardiovasc Thorac Surg; 2019 Sep; 29(3):409-415. PubMed ID: 31065673 [TBL] [Abstract][Full Text] [Related]
6. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070 [TBL] [Abstract][Full Text] [Related]
7. Intermediate-fidelity simulator for self-training in mitral valve surgery. Hossien A Multimed Man Cardiothorac Surg; 2016; 2016():. PubMed ID: 26811508 [TBL] [Abstract][Full Text] [Related]
8. A novel low-fidelity simulator for both mitral valve and tricuspid valve surgery: the surgical skills trainer for classic open and minimally invasive techniques. Verberkmoes NJ; Verberkmoes-Broeders EM Interact Cardiovasc Thorac Surg; 2013 Feb; 16(2):97-101. PubMed ID: 23125307 [TBL] [Abstract][Full Text] [Related]
9. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions. Vukicevic M; Puperi DS; Jane Grande-Allen K; Little SH Ann Biomed Eng; 2017 Feb; 45(2):508-519. PubMed ID: 27324801 [TBL] [Abstract][Full Text] [Related]
10. Development of a high-fidelity minimally invasive mitral valve surgery simulator. Sardari Nia P; Daemen JHT; Maessen JG J Thorac Cardiovasc Surg; 2019 Apr; 157(4):1567-1574. PubMed ID: 30385017 [TBL] [Abstract][Full Text] [Related]
11. Low-Fidelity Simulation of Mitral Valve Surgery: Simple and Effective Trainer. Hossien A J Surg Educ; 2015; 72(5):904-9. PubMed ID: 26116402 [TBL] [Abstract][Full Text] [Related]
12. Surgical training of minimally invasive mitral valve repair on a patient-specific simulator improves surgical skills. Wang C; Karl R; Sharan L; Grizelj A; Fischer S; Karck M; De Simone R; Romano G; Engelhardt S Eur J Cardiothorac Surg; 2024 Mar; 65(3):. PubMed ID: 37988128 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive patient-specific information preprocessing for cardiac surgery simulations. Schoch N; Kißler F; Stoll M; Engelhardt S; de Simone R; Wolf I; Bendl R; Heuveline V Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1051-9. PubMed ID: 27072836 [TBL] [Abstract][Full Text] [Related]
14. New synthetic mitral valve model for human prolapsed mitral valve reconstructive surgery for training. Goode D; Mohammadi S; Taheri R; Mohammadi H J Med Eng Technol; 2020 Apr; 44(3):133-138. PubMed ID: 32568627 [TBL] [Abstract][Full Text] [Related]