These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29232512)

  • 1. Direct Anionic Effect on Water Structure and Indirect Anionic Effect on Peptide Backbone Hydration State Revealed by Thin-Layer Infrared Spectroscopy.
    Zhao J; Wang J
    J Phys Chem B; 2018 Jan; 122(1):68-76. PubMed ID: 29232512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hofmeister anionic effects on hydration electric fields around water and peptide.
    Kim H; Lee H; Lee G; Kim H; Cho M
    J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Simulation Study of Vibrational Spectral Diffusion and Hydrogen Bond Fluctuations in Aqueous Solution of N-Methylacetamide.
    Yadav VK; Chandra A
    J Phys Chem B; 2015 Jul; 119(30):9858-67. PubMed ID: 26191969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between metal cation and unnatural peptide backbone mediated by polarized water molecules: study of infrared spectroscopy and computations.
    Shi J; Wang J
    J Phys Chem B; 2014 Oct; 118(43):12336-47. PubMed ID: 25275795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions.
    Zhao J; Wang J
    J Phys Chem B; 2016 Sep; 120(36):9590-8. PubMed ID: 27537202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational spectroscopy of microhydrated conjugate base anions.
    Asmis KR; Neumark DM
    Acc Chem Res; 2012 Jan; 45(1):43-52. PubMed ID: 21675714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration Effect on Amide I Infrared Bands in Water: An Interpretation Based on an Interaction Energy Decomposition Scheme.
    Farag MH; Ruiz-López MF; Bastida A; Monard G; Ingrosso F
    J Phys Chem B; 2015 Jul; 119(29):9056-67. PubMed ID: 25233436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen Bond Exchange and Ca
    Cracchiolo OM; Geremia DK; Corcelli SA; Serrano AL
    J Phys Chem B; 2020 Aug; 124(32):6947-6954. PubMed ID: 32687356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion Specificity in Dimethyl Sulfoxide-Water Mixtures Exemplified by a Thermosensitive Polymer.
    Zhu R; Baraniak MK; Jäkle F; Liu G
    J Phys Chem B; 2018 Aug; 122(34):8293-8300. PubMed ID: 30086631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments.
    Cai K; Su T; Lin S; Zheng R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():548-56. PubMed ID: 24036186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trehalose induced modifications in the solvation pattern of N-methylacetamide.
    Paul S; Paul S
    J Phys Chem B; 2014 Jan; 118(4):1052-63. PubMed ID: 24423002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic Collapse in N-Methylacetamide-Water Mixtures.
    Salamatova E; Cunha AV; Bloem E; Roeters SJ; Woutersen S; Jansen TLC; Pshenichnikov MS
    J Phys Chem A; 2018 Mar; 122(9):2468-2478. PubMed ID: 29425450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Study of Helical and Helix-Hinge-Helix Conformations of an Anti-Microbial Peptide in Solution by Molecular Dynamics and Vibrational Analysis.
    Joodaki F; Martin LM; Greenfield ML
    J Phys Chem B; 2021 Jan; 125(3):703-721. PubMed ID: 33464100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion specificity at the peptide bond: molecular dynamics simulations of N-methylacetamide in aqueous salt solutions.
    Heyda J; Vincent JC; Tobias DJ; Dzubiella J; Jungwirth P
    J Phys Chem B; 2010 Jan; 114(2):1213-20. PubMed ID: 20038160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermolecular charge flux as the origin of infrared intensity enhancement upon halogen-bond formation of the peptide group.
    Torii H
    J Chem Phys; 2010 Jul; 133(3):034504. PubMed ID: 20649334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.
    Ahmed M; Namboodiri V; Singh AK; Mondal JA
    J Chem Phys; 2014 Oct; 141(16):164708. PubMed ID: 25362333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anharmonic vibrations of N-H in Cl(-)(N-methylacetamide)1(H2O)(0-2)Ar2 cluster ions. Combined IRPD experiments and BOMD simulations.
    Beck JP; Gaigeot MP; Lisy JM
    Phys Chem Chem Phys; 2013 Oct; 15(39):16736-45. PubMed ID: 23986352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of intermolecular interactions mediated by hydrogen bonding.
    De Marco L; Thämer M; Reppert M; Tokmakoff A
    J Chem Phys; 2014 Jul; 141(3):034502. PubMed ID: 25053321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: linear and nonlinear vibrational spectra.
    Kwac K; Lee H; Cho M
    J Chem Phys; 2004 Jan; 120(3):1477-90. PubMed ID: 15268273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping structural perturbations of water in ionic solutions.
    Galamba N
    J Phys Chem B; 2012 May; 116(17):5242-50. PubMed ID: 22480309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.