These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 29232515)
1. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules. Vuong VQ; Akkarapattiakal Kuriappan J; Kubillus M; Kranz JJ; Mast T; Niehaus TA; Irle S; Elstner M J Chem Theory Comput; 2018 Jan; 14(1):115-125. PubMed ID: 29232515 [TBL] [Abstract][Full Text] [Related]
2. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. Choi TH; Liang R; Maupin CM; Voth GA J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052 [TBL] [Abstract][Full Text] [Related]
3. Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications. Gaus M; Lu X; Elstner M; Cui Q J Chem Theory Comput; 2014 Apr; 10(4):1518-1537. PubMed ID: 24803865 [TBL] [Abstract][Full Text] [Related]
4. Parametrization and Benchmark of DFTB3 for Organic Molecules. Gaus M; Goez A; Elstner M J Chem Theory Comput; 2013 Jan; 9(1):338-54. PubMed ID: 26589037 [TBL] [Abstract][Full Text] [Related]
5. Time-Dependent Long-Range-Corrected Density-Functional Tight-Binding Method Combined with the Polarizable Continuum Model. Nishimoto Y J Phys Chem A; 2019 Jul; 123(26):5649-5659. PubMed ID: 31150233 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent density-functional tight-binding method with the third-order expansion of electron density. Nishimoto Y J Chem Phys; 2015 Sep; 143(9):094108. PubMed ID: 26342360 [TBL] [Abstract][Full Text] [Related]
7. Analytical Time-Dependent Long-Range Corrected Density Functional Tight Binding (TD-LC-DFTB) Gradients in DFTB+: Implementation and Benchmark for Excited-State Geometries and Transition Energies. Sokolov M; Bold BM; Kranz JJ; Höfener S; Niehaus TA; Elstner M J Chem Theory Comput; 2021 Apr; 17(4):2266-2282. PubMed ID: 33689344 [TBL] [Abstract][Full Text] [Related]
8. Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems. Kubillus M; Kubař T; Gaus M; Řezáč J; Elstner M J Chem Theory Comput; 2015 Jan; 11(1):332-42. PubMed ID: 26889515 [TBL] [Abstract][Full Text] [Related]
9. Excitonic and charge transfer interactions in tetracene stacked and T-shaped dimers. C A Valente D; do Casal MT; Barbatti M; Niehaus TA; Aquino AJA; Lischka H; Cardozo TM J Chem Phys; 2021 Jan; 154(4):044306. PubMed ID: 33514084 [TBL] [Abstract][Full Text] [Related]
10. DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters. Gaus M; Jin H; Demapan D; Christensen AS; Goyal P; Elstner M; Cui Q J Chem Theory Comput; 2015 Sep; 11(9):4205-19. PubMed ID: 26575916 [TBL] [Abstract][Full Text] [Related]
11. Density functional tight binding. Elstner M; Seifert G Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20120483. PubMed ID: 24516180 [TBL] [Abstract][Full Text] [Related]
12. An Efficient Way to Model Complex Iron Carbides: A Benchmark Study of DFTB2 against DFT. Bai J; Liu X; Guo W; Lei T; Teng B; Xiang H; Wen X J Phys Chem A; 2023 Mar; 127(9):2071-2080. PubMed ID: 36849363 [TBL] [Abstract][Full Text] [Related]
13. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules. Gruden M; Andjeklović L; Jissy AK; Stepanović S; Zlatar M; Cui Q; Elstner M J Comput Chem; 2017 Sep; 38(25):2171-2185. PubMed ID: 28736893 [TBL] [Abstract][Full Text] [Related]
14. Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning. Kranz JJ; Kubillus M; Ramakrishnan R; von Lilienfeld OA; Elstner M J Chem Theory Comput; 2018 May; 14(5):2341-2352. PubMed ID: 29579387 [TBL] [Abstract][Full Text] [Related]
15. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. Gaus M; Chou CP; Witek H; Elstner M J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of tight-binding DFT performance for the description of organic photochromes properties. Poidevin C; Duplaix-Rata G; Costuas K; Fihey A J Chem Phys; 2023 Feb; 158(7):074303. PubMed ID: 36813718 [TBL] [Abstract][Full Text] [Related]
17. Reliability of semiempirical and DFTB methods for the global optimization of the structures of nanoclusters. Galvão BRL; Viegas LP; Salahub DR; Lourenço MP J Mol Model; 2020 Oct; 26(11):303. PubMed ID: 33064203 [TBL] [Abstract][Full Text] [Related]
18. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method. Lutsker V; Aradi B; Niehaus TA J Chem Phys; 2015 Nov; 143(18):184107. PubMed ID: 26567646 [TBL] [Abstract][Full Text] [Related]
19. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. Lu X; Gaus M; Elstner M; Cui Q J Phys Chem B; 2015 Jan; 119(3):1062-82. PubMed ID: 25178644 [TBL] [Abstract][Full Text] [Related]
20. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). Gaus M; Cui Q; Elstner M J Chem Theory Comput; 2012 Apr; 7(4):931-948. PubMed ID: 23204947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]