These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29232832)

  • 1. Hybrid Orientation Based Human Limbs Motion Tracking Method.
    Glonek G; Wojciechowski A
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion of Multiple Lidars and Inertial Sensors for the Real-Time Pose Tracking of Human Motion.
    Patil AK; Balasubramanyam A; Ryu JY; B N PK; Chakravarthi B; Chai YH
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking.
    Yi C; Ma J; Guo H; Han J; Gao H; Jiang F; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Open-Source Platform for Human Pose Estimation and Tracking Using a Heterogeneous Multi-Sensor System.
    Patil AK; Balasubramanyam A; Ryu JY; Chakravarthi B; Chai YH
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion.
    Filippeschi A; Schmitz N; Miezal M; Bleser G; Ruffaldi E; Stricker D
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
    He C; Kazanzides P; Sen HT; Kim S; Liu Y
    Sensors (Basel); 2015 Jul; 15(7):16448-65. PubMed ID: 26184191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures.
    Xu X; McGorry RW
    Appl Ergon; 2015 Jul; 49():47-54. PubMed ID: 25766422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
    Wouda FJ; Giuberti M; Bellusci G; Veltink PH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Limb Motion Tracking with a Single IMU Sensor for Physical Therapy Exercises.
    Wei W; Kurita K; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7152-7157. PubMed ID: 34892750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Pose Estimation from Video and IMUs.
    Marcard Tv; Pons-Moll G; Rosenhahn B
    IEEE Trans Pattern Anal Mach Intell; 2016 Aug; 38(8):1533-47. PubMed ID: 26829774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Custom IMU-Based Wearable System for Robust 2.4 GHz Wireless Human Body Parts Orientation Tracking and 3D Movement Visualization on an Avatar.
    González-Alonso J; Oviedo-Pastor D; Aguado HJ; Díaz-Pernas FJ; González-Ortega D; Martínez-Zarzuela M
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized Markerless Upper-Body Tracking with a Depth Camera and Wrist-Worn Inertial Measurement Units.
    Jatesiktat P; Anopas D; Ang WT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-6. PubMed ID: 30440294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight Controller as a Low-Cost IMU Sensor for Human Motion Measurement.
    Iluk A
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization-Based Sensor Fusion of GNSS and IMU Using a Moving Horizon Approach.
    Girrbach F; Hol JD; Bellusci G; Diehl M
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28534857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial Motion Capture Costume Design Study.
    Szczęsna A; Skurowski P; Lach E; Pruszowski P; Pęszor D; Paszkuta M; Słupik J; Lebek K; Janiak M; Polański A; Wojciechowski K
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28304337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate estimation of joint motion trajectories for rehabilitation using Kinect.
    Sinha S; Bhowmick B; Sinha A; Das A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3864-3867. PubMed ID: 29060741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fastSW: Efficient Piecewise Linear Approximation of Quaternion-Based Orientation Sensor Signals for Motion Capturing with Wearable IMUs.
    Grützmacher F; Kempfle J; Van Laerhoven K; Haubelt C
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SteadEye-Head-Improving MARG-Sensor Based Head Orientation Measurements Through Eye Tracking Data.
    Wöhle L; Gebhard M
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.