BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29232921)

  • 1. The Importance of the Circadian Clock in Regulating Plant Metabolism.
    Kim JA; Kim HS; Choi SH; Jang JY; Jeong MJ; Lee SI
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29232921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interactions between the circadian clock and primary metabolism.
    Farré EM; Weise SE
    Curr Opin Plant Biol; 2012 Jun; 15(3):293-300. PubMed ID: 22305520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.
    Campoli C; Shtaya M; Davis SJ; von Korff M
    BMC Plant Biol; 2012 Jun; 12():97. PubMed ID: 22720803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.).
    Li C; Liu XJ; Yan Y; Alam MS; Liu Z; Yang ZK; Tao RF; Yue EK; Duan MH; Xu JH
    Plant Sci; 2022 Feb; 315():111145. PubMed ID: 35067308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian Rhythms in Plants.
    Creux N; Harmer S
    Cold Spring Harb Perspect Biol; 2019 Sep; 11(9):. PubMed ID: 31138544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability.
    Steed G; Ramirez DC; Hannah MA; Webb AAR
    Science; 2021 Apr; 372(6541):. PubMed ID: 33926926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian Clock Components Offer Targets for Crop Domestication and Improvement.
    McClung CR
    Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33800720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields.
    Gibson K; Park JS; Nagai Y; Hwang SK; Cho YC; Roh KH; Lee SM; Kim DH; Choi SB; Ito H; Edwards GE; Okita TW
    Plant Sci; 2011 Sep; 181(3):275-81. PubMed ID: 21763538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory principles and experimental approaches to the circadian control of starch turnover.
    Seaton DD; Ebenhöh O; Millar AJ; Pokhilko A
    J R Soc Interface; 2014 Feb; 11(91):20130979. PubMed ID: 24335560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological significance of the plant circadian clock in natural field conditions.
    Izawa T
    Plant Cell Environ; 2012 Oct; 35(10):1729-41. PubMed ID: 22681566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops.
    Dwivedi SL; Quiroz LF; Spillane C; Wu R; Mattoo AK; Ortiz R
    Planta; 2024 Feb; 259(4):72. PubMed ID: 38386103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naturally occurring allele diversity allows potato cultivation in northern latitudes.
    Kloosterman B; Abelenda JA; Gomez Mdel M; Oortwijn M; de Boer JM; Kowitwanich K; Horvath BM; van Eck HJ; Smaczniak C; Prat S; Visser RG; Bachem CW
    Nature; 2013 Mar; 495(7440):246-50. PubMed ID: 23467094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian regulation of metabolism across photosynthetic organisms.
    de Barros Dantas LL; Eldridge BM; Dorling J; Dekeya R; Lynch DA; Dodd AN
    Plant J; 2023 Nov; 116(3):650-668. PubMed ID: 37531328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing at the right time: interconnecting the TOR pathway with photoperiod and circadian regulation.
    Urrea-Castellanos R; Caldana C; Henriques R
    J Exp Bot; 2022 Nov; 73(20):7006-7015. PubMed ID: 35738873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock.
    Haydon MJ; Mielczarek O; Robertson FC; Hubbard KE; Webb AA
    Nature; 2013 Oct; 502(7473):689-92. PubMed ID: 24153186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modelling of diurnal regulation of carbohydrate allocation by osmo-related processes in plants.
    Pokhilko A; Ebenhöh O
    J R Soc Interface; 2015 Mar; 12(104):20141357. PubMed ID: 25631572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starch and the clock: the dark side of plant productivity.
    Graf A; Smith AM
    Trends Plant Sci; 2011 Mar; 16(3):169-75. PubMed ID: 21216654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
    Filichkin SA; Breton G; Priest HD; Dharmawardhana P; Jaiswal P; Fox SE; Michael TP; Chory J; Kay SA; Mockler TC
    PLoS One; 2011; 6(6):e16907. PubMed ID: 21694767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.