These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29233222)

  • 1. Understanding membrane-active antimicrobial peptides.
    Huang HW; Charron NE
    Q Rev Biophys; 2017 Jan; 50():e10. PubMed ID: 29233222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison.
    Faust JE; Yang PY; Huang HW
    Biophys J; 2017 Apr; 112(8):1663-1672. PubMed ID: 28445757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode of Action of Antimicrobial Peptides on E. coli Spheroplasts.
    Sun Y; Sun TL; Huang HW
    Biophys J; 2016 Jul; 111(1):132-9. PubMed ID: 27410741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin.
    Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G
    Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli.
    Tawfik MM; Bertelsen M; Abdel-Rahman MA; Strong PN; Miller K
    mSphere; 2021 May; 6(3):. PubMed ID: 33980680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Peptides Share a Common Interaction Driven by Membrane Line Tension Reduction.
    Henderson JM; Waring AJ; Separovic F; Lee KYC
    Biophys J; 2016 Nov; 111(10):2176-2189. PubMed ID: 27851941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lipids in the interaction of antimicrobial peptides with membranes.
    Teixeira V; Feio MJ; Bastos M
    Prog Lipid Res; 2012 Apr; 51(2):149-77. PubMed ID: 22245454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-resistant short antimicrobial peptides.
    Mohanram H; Bhattacharjya S
    Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids.
    Chongsiriwatana NP; Lin JS; Kapoor R; Wetzler M; Rea JAC; Didwania MK; Contag CH; Barron AE
    Sci Rep; 2017 Dec; 7(1):16718. PubMed ID: 29196622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane targeting cationic antimicrobial peptides.
    Ciumac D; Gong H; Hu X; Lu JR
    J Colloid Interface Sci; 2019 Mar; 537():163-185. PubMed ID: 30439615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically diverse antimicrobial peptides induce hyperpolarization of the E. coli membrane.
    Bhaumik KN; Spohn R; Dunai A; Daruka L; Olajos G; Zákány F; Hetényi A; Pál C; Martinek TA
    Commun Biol; 2024 Oct; 7(1):1264. PubMed ID: 39367191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of NMR spectroscopy for characterization of antimicrobial peptides.
    Porcelli F; Ramamoorthy A; Barany G; Veglia G
    Methods Mol Biol; 2013; 1063():159-80. PubMed ID: 23975777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial Peptides: Mechanisms of Action and Resistance.
    Bechinger B; Gorr SU
    J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides.
    Arias M; Prenner EJ; Vogel HJ
    Methods Mol Biol; 2017; 1548():119-140. PubMed ID: 28013501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by
    Laadhari M; Arnold AA; Gravel AE; Separovic F; Marcotte I
    Biochim Biophys Acta; 2016 Dec; 1858(12):2959-2964. PubMed ID: 27639521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and Absorbance Spectroscopy Methods to Study Membrane Perturbations by Antimicrobial Host Defense Peptides.
    Arias M; Vogel HJ
    Methods Mol Biol; 2017; 1548():141-157. PubMed ID: 28013502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomerization and insertion of antimicrobial peptide TP4 on bacterial membrane and membrane-mimicking surfactant sarkosyl.
    Wang SH; Wang CF; Chang TW; Wang YJ; Liao YD
    PLoS One; 2019; 14(5):e0216946. PubMed ID: 31083701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.