BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 29233890)

  • 1. Phosphate (P
    Bon N; Couasnay G; Bourgine A; Sourice S; Beck-Cormier S; Guicheux J; Beck L
    J Biol Chem; 2018 Feb; 293(6):2102-2114. PubMed ID: 29233890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate-dependent FGF23 secretion is modulated by PiT2/Slc20a2.
    Bon N; Frangi G; Sourice S; Guicheux J; Beck-Cormier S; Beck L
    Mol Metab; 2018 May; 11():197-204. PubMed ID: 29551636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life.
    Bøttger P; Pedersen L
    BMC Biochem; 2011 May; 12():21. PubMed ID: 21586110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clonal osteoblastic cell lines with CRISPR/Cas9-mediated ablation of Pit1 or Pit2 show enhanced mineralization despite reduced osteogenic gene expression.
    Yamazaki M; Kawai M; Kinoshita S; Tachikawa K; Nakanishi T; Ozono K; Michigami T
    Bone; 2021 Oct; 151():116036. PubMed ID: 34118444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2.
    Bøttger P; Hede SE; Grunnet M; Høyer B; Klaerke DA; Pedersen L
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1377-87. PubMed ID: 16790504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slc20a1/Pit1 and Slc20a2/Pit2 are essential for normal skeletal myofiber function and survival.
    Chande S; Caballero D; Ho BB; Fetene J; Serna J; Pesta D; Nasiri A; Jurczak M; Chavkin NW; Hernando N; Giachelli CM; Wagner CA; Zeiss C; Shulman GI; Bergwitz C
    Sci Rep; 2020 Feb; 10(1):3069. PubMed ID: 32080237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of type III sodium-dependent phosphate transporters/retroviral receptors mRNAs during osteoblast differentiation.
    Nielsen LB; Pedersen FS; Pedersen L
    Bone; 2001 Feb; 28(2):160-6. PubMed ID: 11182373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular phosphate sensing in mammals: what do we know?
    Beck L; Beck-Cormier S
    J Mol Endocrinol; 2020 Oct; 65(3):R53-R63. PubMed ID: 32755995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MiR-9-5p Down-Regulates PiT2, but not PiT1 in Human Embryonic Kidney 293 Cells.
    Bezerra DP; Keasey M; Oliveira JRM
    J Mol Neurosci; 2017 May; 62(1):28-33. PubMed ID: 28303467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mice with hypomorphic expression of the sodium-phosphate cotransporter PiT1/Slc20a1 have an unexpected normal bone mineralization.
    Bourgine A; Pilet P; Diouani S; Sourice S; Lesoeur J; Beck-Cormier S; Khoshniat S; Weiss P; Friedlander G; Guicheux J; Beck L
    PLoS One; 2013; 8(6):e65979. PubMed ID: 23785462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Several phosphate transport processes are present in vascular smooth muscle cells.
    Hortells L; Guillén N; Sosa C; Sorribas V
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H448-H460. PubMed ID: 31886722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular phosphate as a signaling molecule.
    Michigami T
    Contrib Nephrol; 2013; 180():14-24. PubMed ID: 23652547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel transport-independent function of PiT1/SLC20A1 in the regulation of TNF-induced apoptosis.
    Salaün C; Leroy C; Rousseau A; Boitez V; Beck L; Friedlander G
    J Biol Chem; 2010 Nov; 285(45):34408-18. PubMed ID: 20817733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells.
    Chavkin NW; Chia JJ; Crouthamel MH; Giachelli CM
    Exp Cell Res; 2015 Apr; 333(1):39-48. PubMed ID: 25684711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity.
    Beck L; Leroy C; Salaün C; Margall-Ducos G; Desdouets C; Friedlander G
    J Biol Chem; 2009 Nov; 284(45):31363-74. PubMed ID: 19726692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High expression of the Pi-transporter SLC20A1/Pit1 in calcific aortic valve disease promotes mineralization through regulation of Akt-1.
    El Husseini D; Boulanger MC; Fournier D; Mahmut A; Bossé Y; Pibarot P; Mathieu P
    PLoS One; 2013; 8(1):e53393. PubMed ID: 23308213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and expression analysis of type II and type III P
    Guillén N; Caldas YA; Levi M; Sorribas V
    Exp Physiol; 2019 Jan; 104(1):149-161. PubMed ID: 30379374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal phosphate absorption is mediated by multiple transport systems in rats.
    Candeal E; Caldas YA; Guillén N; Levi M; Sorribas V
    Am J Physiol Gastrointest Liver Physiol; 2017 Apr; 312(4):G355-G366. PubMed ID: 28232455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics and therapeutic potential of sodium-dependent phosphate cotransporters in relation to idiopathic basal ganglia calcification.
    Inden M; Kurita H; Hozumi I
    J Pharmacol Sci; 2022 Jan; 148(1):152-155. PubMed ID: 34924120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary Brain Calcification Causal PiT2 Transport-Knockout Variants can Exert Dominant Negative Effects on Wild-Type PiT2 Transport Function in Mammalian Cells.
    Larsen FT; Jensen N; Autzen JK; Kongsfelt IB; Pedersen L
    J Mol Neurosci; 2017 Feb; 61(2):215-220. PubMed ID: 27943094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.