BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29233969)

  • 1. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response.
    Lin YL; Tsai HC; Liu PY; Benneyworth M; Wei LN
    Cell Death Dis; 2017 Dec; 8(12):3203. PubMed ID: 29233969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-regulation of receptor interaction protein 140 promotes glucolipotoxicity-induced damage in MIN6 cells.
    Xue LJ; Huang Q; Zeng JE; Zhu H; Xu CY
    Cell Mol Biol (Noisy-le-grand); 2018 Mar; 64(4):39-45. PubMed ID: 29631683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive impairments in adult mice with constitutive inactivation of RIP140 gene expression.
    Duclot F; Lapierre M; Fritsch S; White R; Parker MG; Maurice T; Cavaillès V
    Genes Brain Behav; 2012 Feb; 11(1):69-78. PubMed ID: 21906262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Hsf1 and the Heat Shock Response.
    Pincus D
    Adv Exp Med Biol; 2020; 1243():41-50. PubMed ID: 32297210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA.
    Fujimoto M; Takii R; Katiyar A; Srivastava P; Nakai A
    Mol Cell Biol; 2018 Jul; 38(13):. PubMed ID: 29661921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) is Transiently Expressed after Heat Shock Stress and Suppresses Heat Shock Factor 1.
    Park AY; Park YS; So D; Song IK; Choi JE; Kim HJ; Lee KJ
    Sci Rep; 2019 Feb; 9(1):2592. PubMed ID: 30796345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.
    Dai C
    Philos Trans R Soc Lond B Biol Sci; 2018 Jan; 373(1738):. PubMed ID: 29203710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.
    Meijering RA; Wiersma M; van Marion DM; Zhang D; Hoogstra-Berends F; Dijkhuis AJ; Schmidt M; Wieland T; Kampinga HH; Henning RH; Brundel BJ
    PLoS One; 2015; 10(7):e0133553. PubMed ID: 26193369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer.
    Yang T; Ren C; Lu C; Qiao P; Han X; Wang L; Wang D; Lv S; Sun Y; Yu Z
    Cancer Res; 2019 Oct; 79(20):5233-5244. PubMed ID: 31409638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment.
    Takii R; Fujimoto M; Matsumoto M; Srivastava P; Katiyar A; Nakayama KI; Nakai A
    EMBO J; 2019 Dec; 38(24):e102566. PubMed ID: 31657478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation.
    Shah SP; Nooka AK; Jaye DL; Bahlis NJ; Lonial S; Boise LH
    Oncotarget; 2016 Sep; 7(37):59727-59741. PubMed ID: 27487129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter.
    Ackerman A; Kijima T; Eguchi T; Prince TL
    Methods Mol Biol; 2023; 2693():1-11. PubMed ID: 37540422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.
    Neueder A; Gipson TA; Batterton S; Lazell HJ; Farshim PP; Paganetti P; Housman DE; Bates GP
    Sci Rep; 2017 Oct; 7(1):12556. PubMed ID: 28970536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dexamethasone-induced activation of heat shock response ameliorates seizure susceptibility and neuroinflammation in mouse models of Lafora disease.
    Sinha P; Verma B; Ganesh S
    Exp Neurol; 2021 Jun; 340():113656. PubMed ID: 33639210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative regulation of adiponectin secretion by receptor interacting protein 140 (RIP140).
    Ho PC; Wei LN
    Cell Signal; 2012 Jan; 24(1):71-6. PubMed ID: 21872658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stress activates ER stress signals which suppress the heat shock response, an effect occurring preferentially in the cortex in rats.
    Liu Y; Sakamoto H; Adachi M; Zhao S; Ukai W; Hashimoto E; Hareyama M; Ishida T; Imai K; Shinomura Y
    Mol Biol Rep; 2012 Apr; 39(4):3987-93. PubMed ID: 21779805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for repression of liver X receptor-mediated gene transcription by receptor-interacting protein 140.
    Jakobsson T; Osman W; Gustafsson JA; Zilliacus J; Wärnmark A
    Biochem J; 2007 Jul; 405(1):31-9. PubMed ID: 17391100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural differentiation and the attenuated heat shock response.
    Yang J; Oza J; Bridges K; Chen KY; Liu AY
    Brain Res; 2008 Apr; 1203():39-50. PubMed ID: 18316066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Heat Shock Factor 1 Enhances Repressive Molecular Mechanisms on the POMC Promoter.
    Ciato D; Li R; Monteserin Garcia JL; Papst L; D'Annunzio S; Hristov M; Tichomirowa MA; Belaya Z; Rozhinskaya L; Buchfelder M; Theodoropoulou M; Paez-Pereda M; Stalla GK
    Neuroendocrinology; 2019; 109(4):362-373. PubMed ID: 30995664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.