These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
9. Enhanced microfluidic multi-target separation by positive and negative magnetophoresis. Khashan S; Odhah AA; Taha M; Alazzam A; Al-Fandi M Sci Rep; 2024 Jun; 14(1):13293. PubMed ID: 38858424 [TBL] [Abstract][Full Text] [Related]
10. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196 [TBL] [Abstract][Full Text] [Related]
11. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics. Ni C; Zhu Z; Zhou Z; Xiang N Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617 [TBL] [Abstract][Full Text] [Related]
12. Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels. Bányai A; Tóth EL; Varga M; Fürjes P Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591164 [TBL] [Abstract][Full Text] [Related]
13. Oscillatory inertial focusing in infinite microchannels. Mutlu BR; Edd JF; Toner M Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599 [TBL] [Abstract][Full Text] [Related]
14. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting. Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787 [TBL] [Abstract][Full Text] [Related]
15. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599 [TBL] [Abstract][Full Text] [Related]
16. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Choi YS; Seo KW; Lee SJ Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415 [TBL] [Abstract][Full Text] [Related]
17. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Lee MG; Shin JH; Bae CY; Choi S; Park JK Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953 [TBL] [Abstract][Full Text] [Related]
18. Sheathless and high throughput sorting of paramagnetic microparticles in a magneto-hydrodynamic microfluidic device. Kumar V; Rezai P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():473-476. PubMed ID: 28268374 [TBL] [Abstract][Full Text] [Related]
19. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
20. Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics. Zhou Y; Ma Z; Ai Y Lab Chip; 2020 Feb; 20(3):568-581. PubMed ID: 31894813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]