These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29234321)

  • 1. Viral Impact in Autoimmune Diseases: Expanding the "X Chromosome-Nucleolus Nexus" Hypothesis.
    Brooks WH
    Front Immunol; 2017; 8():1657. PubMed ID: 29234321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of the "X chromosome-nucleolus nexus" hypothesis of autoimmune diseases with an update explaining disruption of the nucleolus.
    Brooks WH
    Immunol Res; 2018 Dec; 66(6):790-799. PubMed ID: 30515730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mysterious polyamines, the enigmatic Barr body, and lupus: comment on the article by Kim et al.
    Brooks W
    Lupus; 2018 May; 27(6):877-879. PubMed ID: 29444615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Epigenetics-Based Hypothesis of Autoantigen Development in Systemic Lupus Erythematosus.
    Brooks W
    Epigenomes; 2020 Apr; 4(2):. PubMed ID: 34968240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus.
    Brooks WH; Renaudineau Y
    Front Genet; 2015; 6():22. PubMed ID: 25763008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Autoimmune Disease Hypotheses with Introduction of the "Nucleolus" Hypothesis.
    Brooks WH
    Clin Rev Allergy Immunol; 2017 Jun; 52(3):333-350. PubMed ID: 27324247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic lupus erythematosus and related autoimmune diseases are antigen-driven, epigenetic diseases.
    Brooks WH
    Med Hypotheses; 2002 Dec; 59(6):736-41. PubMed ID: 12445518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for systemic lupus erythematosus based on chromatin disruption by polyamines.
    Brooks WH
    Med Hypotheses; 1994 Dec; 43(6):403-8. PubMed ID: 7739413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nucleolus: a model for the organization of nuclear functions.
    Hernandez-Verdun D
    Histochem Cell Biol; 2006 Aug; 126(2):135-48. PubMed ID: 16835752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nucleolar interface of RNA viruses.
    Rawlinson SM; Moseley GW
    Cell Microbiol; 2015 Aug; 17(8):1108-20. PubMed ID: 26041433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional organization of the nucleolus in proliferating plant cells.
    Medina FJ; Cerdido A; de Cárcer G
    Eur J Histochem; 2000; 44(2):117-31. PubMed ID: 10968360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nucleolus, an ally, and an enemy of cancer cells.
    Stępiński D
    Histochem Cell Biol; 2018 Dec; 150(6):607-629. PubMed ID: 30105457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the nucleolus in plant virus systemic infection.
    Kim SH; Ryabov EV; Brown JW; Taliansky M
    Biochem Soc Trans; 2004 Aug; 32(Pt 4):557-60. PubMed ID: 15270674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of nucleolus assembly by non-coding RNA polymerase II transcripts.
    Caudron-Herger M; Pankert T; Rippe K
    Nucleus; 2016 May; 7(3):308-18. PubMed ID: 27416361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig.
    Maddox-Hyttel P; Svarcova O; Laurincik J
    Theriogenology; 2007 Sep; 68 Suppl 1():S63-70. PubMed ID: 17466364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reassembly of functional nucleoli following in situ unraveling by low-ionic-strength treatment of cultured mammalian cells.
    Zatsepina OV; Dudnic OA; Chentsov YS; Thiry M; Spring H; Trendelenburg MF
    Exp Cell Res; 1997 May; 233(1):155-68. PubMed ID: 9184085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The nucleolus as a regulator of cellular senescence].
    Rosete M; Padros MR; Vindrola O
    Medicina (B Aires); 2007; 67(2):183-94. PubMed ID: 17593607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleolar proteome dynamics.
    Andersen JS; Lam YW; Leung AK; Ong SE; Lyon CE; Lamond AI; Mann M
    Nature; 2005 Jan; 433(7021):77-83. PubMed ID: 15635413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic profiling of the human T-cell nucleolus.
    Jarboui MA; Wynne K; Elia G; Hall WW; Gautier VW
    Mol Immunol; 2011 Dec; 49(3):441-52. PubMed ID: 22014684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural changes of the carp (Cyprinus carpio) hepatocyte nucleolus during seasonal acclimatization.
    Alvarez M; Quezada C; Molina A; Krauskopf M; Vera MI; Thiry M
    Biol Cell; 2006 Aug; 98(8):457-63. PubMed ID: 16563129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.