These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29234597)

  • 1. A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis.
    Salem M; Cabezas M; Valverde S; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2018; 17():607-615. PubMed ID: 29234597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Automatic Detection of New T2 Lesions in Multiple Sclerosis Using Deformation Fields.
    Cabezas M; Corral JF; Oliver A; Díez Y; Tintoré M; Auger C; Montalban X; Lladó X; Pareto D; Rovira À
    AJNR Am J Neuroradiol; 2016 Oct; 37(10):1816-1823. PubMed ID: 27282863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images.
    Karimaghaloo Z; Arnold DL; Arbel T
    Med Image Anal; 2016 Jan; 27():17-30. PubMed ID: 26211811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy approach toward reducing false positives in the detection of small multiple sclerosis lesions in magnetic resonance images.
    Aymerich FX; Sobrevilla P; Montseny E; Rovira A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5694-7. PubMed ID: 22255632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating Nonlinear Registration to Improve Subtraction Images for Lesion Detection and Quantification in Multiple Sclerosis.
    Kotari V; Salha R; Wang D; Wood E; Salvetti M; Ristori G; Tang L; Bagnato F; Ikonomidou VN
    J Neuroimaging; 2018 Jan; 28(1):70-78. PubMed ID: 29064129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images.
    Elliott C; Francis SJ; Arnold DL; Collins DL; Arbel T
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):290-7. PubMed ID: 20879327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions.
    Valcarcel AM; Linn KA; Vandekar SN; Satterthwaite TD; Muschelli J; Calabresi PA; Pham DL; Martin ML; Shinohara RT
    J Neuroimaging; 2018 Jul; 28(4):389-398. PubMed ID: 29516669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
    Shah M; Xiao Y; Subbanna N; Francis S; Arnold DL; Collins DL; Arbel T
    Med Image Anal; 2011 Apr; 15(2):267-82. PubMed ID: 21233004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields.
    Karimaghaloo Z; Shah M; Francis SJ; Arnold DL; Collins DL; Arbel T
    IEEE Trans Med Imaging; 2012 Jun; 31(6):1181-94. PubMed ID: 22318484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the detection of new lesions in multiple sclerosis with a cascaded 3D fully convolutional neural network approach.
    Salem M; Ryan MA; Oliver A; Hussain KF; Lladó X
    Front Neurosci; 2022; 16():1007619. PubMed ID: 36507318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective method for computerized prediction and segmentation of multiple sclerosis lesions in brain MRI.
    Roy S; Bhattacharyya D; Bandyopadhyay SK; Kim TH
    Comput Methods Programs Biomed; 2017 Mar; 140():307-320. PubMed ID: 28254088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.
    Sweeney EM; Vogelstein JT; Cuzzocreo JL; Calabresi PA; Reich DS; Crainiceanu CM; Shinohara RT
    PLoS One; 2014; 9(4):e95753. PubMed ID: 24781953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis.
    De Rosa AP; Benedetto M; Tagliaferri S; Bardozzo F; D'Ambrosio A; Bisecco A; Gallo A; Cirillo M; Tagliaferri R; Esposito F
    Sci Rep; 2024 Sep; 14(1):21348. PubMed ID: 39266642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain structure segmentation in the presence of multiple sclerosis lesions.
    González-Villà S; Oliver A; Huo Y; Lladó X; Landman BA
    Neuroimage Clin; 2019; 22():101709. PubMed ID: 30822719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies.
    Ganiler O; Oliver A; Diez Y; Freixenet J; Vilanova JC; Beltran B; Ramió-Torrentà L; Rovira A; Lladó X
    Neuroradiology; 2014 May; 56(5):363-74. PubMed ID: 24590302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A toolbox for multiple sclerosis lesion segmentation.
    Roura E; Oliver A; Cabezas M; Valverde S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Lladó X
    Neuroradiology; 2015 Oct; 57(10):1031-43. PubMed ID: 26227167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.