These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29234984)

  • 1. BoBER: web interface to the base of bioisosterically exchangeable replacements.
    Lešnik S; Škrlj B; Eržen N; Bren U; Gobec S; Konc J; Janežič D
    J Cheminform; 2017 Dec; 9(1):62. PubMed ID: 29234984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioisoIdentifier: an online free tool to investigate local structural replacements from PDB.
    Zhang T; Sun S; Wang R; Li T; Gan B; Zhang Y
    J Cheminform; 2024 Jan; 16(1):7. PubMed ID: 38218937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Laboratory: Tools for Similarity-Based Drug Discovery.
    Lešnik S; Konc J
    Methods Mol Biol; 2020; 2089():1-28. PubMed ID: 31773644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization.
    Langdon SR; Ertl P; Brown N
    Mol Inform; 2010 May; 29(5):366-85. PubMed ID: 27463193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioisosteres and Scaffold Hopping in Medicinal Chemistry.
    Brown N
    Mol Inform; 2014 Jun; 33(6-7):458-62. PubMed ID: 27485983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Scaffold Hopping Applications in Central Nervous System Drug Discovery.
    Callis TB; Garrett TR; Montgomery AP; Danon JJ; Kassiou M
    J Med Chem; 2022 Oct; 65(20):13483-13504. PubMed ID: 36206553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining.
    Zhang T; Jiang S; Li T; Liu Y; Zhang Y
    ACS Omega; 2023 Jul; 8(28):25165-25184. PubMed ID: 37483233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements.
    Desaphy J; Rognan D
    J Chem Inf Model; 2014 Jul; 54(7):1908-18. PubMed ID: 24991975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MolOpt: A Web Server for Drug Design using Bioisosteric Transformation.
    Shan J; Ji C
    Curr Comput Aided Drug Des; 2020; 16(4):460-466. PubMed ID: 31272357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioisosterism and Scaffold Hopping in Modern Nematicide Research.
    Cao X; Yang H; Liu C; Zhang R; Maienfisch P; Xu X
    J Agric Food Chem; 2022 Sep; 70(36):11042-11055. PubMed ID: 35549340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FragRep: A Web Server for Structure-Based Drug Design by Fragment Replacement.
    Shan J; Pan X; Wang X; Xiao X; Ji C
    J Chem Inf Model; 2020 Dec; 60(12):5900-5906. PubMed ID: 33275427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADMETopt: A Web Server for ADMET Optimization in Drug Design via Scaffold Hopping.
    Yang H; Sun L; Wang Z; Li W; Liu G; Tang Y
    J Chem Inf Model; 2018 Oct; 58(10):2051-2056. PubMed ID: 30251842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SwissBioisostere: a database of molecular replacements for ligand design.
    Wirth M; Zoete V; Michielin O; Sauer WH
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D1137-43. PubMed ID: 23161688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold hopping by fragment replacement.
    Vainio MJ; Kogej T; Raubacher F; Sadowski J
    J Chem Inf Model; 2013 Jul; 53(7):1825-35. PubMed ID: 23826858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProBiS-Dock Database: A Web Server and Interactive Web Repository of Small Ligand-Protein Binding Sites for Drug Design.
    Konc J; Lešnik S; Škrlj B; Janežič D
    J Chem Inf Model; 2021 Aug; 61(8):4097-4107. PubMed ID: 34319727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Molecular-Modeling, Scaffold-Hopping, and Bioisosteric Approaches to the Discovery of New Heterocyclic Picolinamides.
    Jackson V; Jordan L; Burgin RN; McGaw OJS; Muir CW; Ceban V
    J Agric Food Chem; 2022 Sep; 70(36):11031-11041. PubMed ID: 35852973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioisosteric Replacement as a Tool in Anti-HIV Drug Design.
    Dick A; Cocklin S
    Pharmaceuticals (Basel); 2020 Feb; 13(3):. PubMed ID: 32121077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Isostere Database: a web-based tool using quantum chemical topology to predict bioisosteric replacements for drug design.
    Devereux M; Popelier PL; McLay IM
    J Chem Inf Model; 2009 Jun; 49(6):1497-513. PubMed ID: 19453153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Database of bioactive ring systems with calculated properties and its use in bioisosteric design and scaffold hopping.
    Ertl P
    Bioorg Med Chem; 2012 Sep; 20(18):5436-42. PubMed ID: 22436390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of reduced graphs to encode bioisosterism for similarity-based virtual screening.
    Birchall K; Gillet VJ; Willett P; Ducrot P; Luttmann C
    J Chem Inf Model; 2009 Jun; 49(6):1330-46. PubMed ID: 19485397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.