BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 29235120)

  • 1. Two-dimensional antiscatter grid: A novel scatter rejection device for Cone-beam computed tomography.
    Alexeev T; Kavanagh B; Miften M; Altunbas C
    Med Phys; 2018 Feb; 45(2):529-534. PubMed ID: 29235120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed large-area focused grid for scatter reduction in cone-beam CT.
    Cobos SF; Norley CJ; Nikolov HN; Holdsworth DW
    Med Phys; 2023 Jan; 50(1):240-258. PubMed ID: 36215176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of scatter rejection and correction performance of 2D antiscatter grids in cone beam computed tomography.
    Park Y; Alexeev T; Miller B; Miften M; Altunbas C
    Med Phys; 2021 Apr; 48(4):1846-1858. PubMed ID: 33554377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a two-dimensional Moire-free antiscatter grid for cone-beam computed tomography.
    Kim J; Kang Y; Hwang T; Park M; Chung W
    Med Phys; 2023 Jun; 50(6):3435-3444. PubMed ID: 36748167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission characteristics of a two dimensional antiscatter grid prototype for CBCT.
    Altunbas C; Kavanagh B; Alexeev T; Miften M
    Med Phys; 2017 Aug; 44(8):3952-3964. PubMed ID: 28513847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.
    Stankovic U; van Herk M; Ploeger LS; Sonke JJ
    Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified scatter rejection and correction method for cone beam computed tomography.
    Altunbas C; Park Y; Yu Z; Gopal A
    Med Phys; 2021 Mar; 48(3):1211-1225. PubMed ID: 33378551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous scatter rejection and correction method using 2D antiscatter grids for CBCT.
    Yu Z; Park Y; Altunbas C
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11312():. PubMed ID: 32313356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel total variation based ring artifact suppression method for CBCT imaging with two-dimensional antiscatter grids.
    Alexeev T; Kavanagh B; Miften M; Altunbas C
    Med Phys; 2019 May; 46(5):2181-2193. PubMed ID: 30802970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent kilovoltage CBCT imaging and megavoltage beam delivery: suppression of cross-scatter with 2D antiscatter grids and grid-based scatter sampling.
    Bayat F; Eldib ME; Kavanagh B; Miften M; Altunbas C
    Phys Med Biol; 2022 Aug; 67(16):. PubMed ID: 35853441
    [No Abstract]   [Full Text] [Related]  

  • 11. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation study to evaluate the effect of 2D antiscatter grid primary transmission on flat panel detector based CBCT image quality.
    Eldib ME; Bayat F; Miften M; Altunbas C
    Biomed Phys Eng Express; 2023 Oct; 9(6):. PubMed ID: 37729884
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of grid geometry on the transmission properties of 2D grids for flat detectors in CBCT.
    Altunbas C; Alexeev T; Miften M; Kavanagh B
    Phys Med Biol; 2019 Nov; 64(22):225006. PubMed ID: 31585444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative CBCT pipeline based on 2D antiscatter grid and grid-based scatter sampling for image-guided radiation therapy.
    Bayat F; Ruan D; Miften M; Altunbas C
    Med Phys; 2023 Dec; 50(12):7980-7995. PubMed ID: 37665760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiscatter grids in mobile C-arm cone-beam CT: effect on image quality and dose.
    Schafer S; Stayman JW; Zbijewski W; Schmidgunst C; Kleinszig G; Siewerdsen JH
    Med Phys; 2012 Jan; 39(1):153-9. PubMed ID: 22225284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal combination of anti-scatter grids and software correction for CBCT imaging.
    Stankovic U; Ploeger LS; van Herk M; Sonke JJ
    Med Phys; 2017 Sep; 44(9):4437-4451. PubMed ID: 28556204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions.
    Sisniega A; Zbijewski W; Badal A; Kyprianou IS; Stayman JW; Vaquero JJ; Siewerdsen JH
    Med Phys; 2013 May; 40(5):051915. PubMed ID: 23635285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of dual-energy CBCT material decomposition in the human torso with 2D anti-scatter grids and grid-based scatter sampling.
    Altunbas C
    Med Phys; 2024 Jan; 51(1):334-347. PubMed ID: 37477550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone-beam breast computed tomography with a displaced flat panel detector array.
    Mettivier G; Russo P; Lanconelli N; Meo SL
    Med Phys; 2012 May; 39(5):2805-19. PubMed ID: 22559652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part II: System modeling, scatter correction, and optimization.
    Wang A; Maslowski A; Messmer P; Lehmann M; Strzelecki A; Yu E; Paysan P; Brehm M; Munro P; Star-Lack J; Seghers D
    Med Phys; 2018 May; 45(5):1914-1925. PubMed ID: 29509973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.