These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Automated segmentation of cerebral deep gray matter from MRI scans: effect of field strength on sensitivity and reliability. Chu R; Hurwitz S; Tauhid S; Bakshi R BMC Neurol; 2017 Sep; 17(1):172. PubMed ID: 28874119 [TBL] [Abstract][Full Text] [Related]
4. Whole brain and deep gray matter atrophy detection over 5 years with 3T MRI in multiple sclerosis using a variety of automated segmentation pipelines. Chu R; Kim G; Tauhid S; Khalid F; Healy BC; Bakshi R PLoS One; 2018; 13(11):e0206939. PubMed ID: 30408094 [TBL] [Abstract][Full Text] [Related]
5. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis. Gabr RE; Pednekar AS; Govindarajan KA; Sun X; Riascos RF; Ramírez MG; Hasan KM; Lincoln JA; Nelson F; Wolinsky JS; Narayana PA J Magn Reson Imaging; 2017 Aug; 46(2):557-564. PubMed ID: 27869333 [TBL] [Abstract][Full Text] [Related]
6. Single scan quantitative gradient recalled echo MRI for evaluation of tissue damage in lesions and normal appearing gray and white matter in multiple sclerosis. Xiang B; Wen J; Cross AH; Yablonskiy DA J Magn Reson Imaging; 2019 Feb; 49(2):487-498. PubMed ID: 30155934 [TBL] [Abstract][Full Text] [Related]
7. Characterization of gray-matter multiple sclerosis lesions using double inversion recovery, diffusion, contrast-enhanced, and volumetric MRI. Parra Corral MA; Govindarajan ST; Stefancin P; Bangiyev L; Coyle PK; Duong TQ Mult Scler Relat Disord; 2019 Jun; 31():74-81. PubMed ID: 30951968 [TBL] [Abstract][Full Text] [Related]
8. Quantification of global cerebral atrophy in multiple sclerosis from 3T MRI using SPM: the role of misclassification errors. Dell'Oglio E; Ceccarelli A; Glanz BI; Healy BC; Tauhid S; Arora A; Saravanan N; Bruha MJ; Vartanian AV; Dupuy SL; Benedict RHB; Bakshi R; Neema M J Neuroimaging; 2015; 25(2):191-199. PubMed ID: 25523616 [TBL] [Abstract][Full Text] [Related]
9. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images - the difficulty of choosing. Lindig T; Kotikalapudi R; Schweikardt D; Martin P; Bender F; Klose U; Ernemann U; Focke NK; Bender B Neuroimage; 2018 Apr; 170():210-221. PubMed ID: 28188918 [TBL] [Abstract][Full Text] [Related]
11. Detection of Cortical and Deep Gray Matter Lesions in Multiple Sclerosis Using DIR and FLAIR at 3T. Park CC; Thongkham DW; Sadigh G; Saindane AM; Chu R; Bakshi R; Allen JW; Hu R J Neuroimaging; 2021 Mar; 31(2):408-414. PubMed ID: 33351983 [TBL] [Abstract][Full Text] [Related]
12. The Impact of MRI T1 Hypointense Brain Lesions on Cerebral Deep Gray Matter Volume Measures in Multiple Sclerosis. Buyukturkoglu K; Mormina E; De Jager PL; Riley CS; Leavitt VM J Neuroimaging; 2019 Jul; 29(4):458-462. PubMed ID: 30892794 [TBL] [Abstract][Full Text] [Related]
13. Comparing lesion detection of infratentorial multiple sclerosis lesions between T2-weighted spin-echo, 2D-FLAIR, and 3D-FLAIR sequences. Wang KY; Uribe TA; Lincoln CM Clin Imaging; 2018; 51():229-234. PubMed ID: 29879598 [TBL] [Abstract][Full Text] [Related]
14. Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Biberacher V; Schmidt P; Keshavan A; Boucard CC; Righart R; Sämann P; Preibisch C; Fröbel D; Aly L; Hemmer B; Zimmer C; Henry RG; Mühlau M Neuroimage; 2016 Nov; 142():188-197. PubMed ID: 27431758 [TBL] [Abstract][Full Text] [Related]
15. Juxtacortical Lesions in Multiple Sclerosis: Assessment of Gray Matter Involvement Using Phase Difference-enhanced Imaging (PADRE). Futatsuya K; Kakeda S; Yoneda T; Ueda I; Watanabe K; Moriya J; Murakami Y; Ide S; Ogasawara A; Ohnari N; Okada K; Adachi H; Korogi Y Magn Reson Med Sci; 2016 Oct; 15(4):349-354. PubMed ID: 26841855 [TBL] [Abstract][Full Text] [Related]
16. A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. Yousuf F; Dupuy SL; Tauhid S; Chu R; Kim G; Tummala S; Khalid F; Weiner HL; Chitnis T; Healy BC; Bakshi R J Neurol Sci; 2017 Dec; 383():221-229. PubMed ID: 29146095 [TBL] [Abstract][Full Text] [Related]
17. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. Valverde S; Oliver A; Roura E; Pareto D; Vilanova JC; Ramió-Torrentà L; Sastre-Garriga J; Montalban X; Rovira À; Lladó X Neuroimage Clin; 2015; 9():640-7. PubMed ID: 26740917 [TBL] [Abstract][Full Text] [Related]
18. Whole-brain atrophy assessed by proportional- versus registration-based pipelines from 3T MRI in multiple sclerosis. Hemond CC; Chu R; Tummala S; Tauhid S; Healy BC; Bakshi R Brain Behav; 2018 Aug; 8(8):e01068. PubMed ID: 30019857 [TBL] [Abstract][Full Text] [Related]
19. Whole Brain Volume Measured from 1.5T versus 3T MRI in Healthy Subjects and Patients with Multiple Sclerosis. Chu R; Tauhid S; Glanz BI; Healy BC; Kim G; Oommen VV; Khalid F; Neema M; Bakshi R J Neuroimaging; 2016; 26(1):62-7. PubMed ID: 26118637 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]