These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29235215)

  • 1. Cloning-free template DNA preparation for cell-free protein synthesis via two-step PCR using versatile primer designs with short 3'-UTR.
    Nomoto M; Tada Y
    Genes Cells; 2018 Jan; 23(1):46-53. PubMed ID: 29235215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Free Protein Synthesis of Plant Transcription Factors.
    Nomoto M; Tada Y
    Methods Mol Biol; 2018; 1830():337-349. PubMed ID: 30043380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Free Synthesis of Plant Receptor Kinases.
    Nozawa A; Nemoto K; Nomura S; Yamanaka S; Kido K; Sawasaki T
    Methods Mol Biol; 2017; 1621():37-46. PubMed ID: 28567641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe.
    Gan R; Jewett MC
    Biotechnol J; 2014 May; 9(5):641-51. PubMed ID: 24677809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis.
    Yabuki T; Motoda Y; Hanada K; Nunokawa E; Saito M; Seki E; Inoue M; Kigawa T; Yokoyama S
    J Struct Funct Genomics; 2007 Dec; 8(4):173-91. PubMed ID: 18167031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA.
    Schinn SM; Broadbent A; Bradley WT; Bundy BC
    N Biotechnol; 2016 Jun; 33(4):480-7. PubMed ID: 27085957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system.
    Endo Y; Sawasaki T
    J Struct Funct Genomics; 2004; 5(1-2):45-57. PubMed ID: 15263842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in genome-wide protein expression using the wheat germ cell-free system.
    Endo Y; Sawasaki T
    Methods Mol Biol; 2005; 310():145-67. PubMed ID: 16350953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PCR-directed cell-free approach to optimize protein expression using diverse fusion tags.
    Kralicek AV; Radjainia M; Mohamad Ali NA; Carraher C; Newcomb RD; Mitra AK
    Protein Expr Purif; 2011 Nov; 80(1):117-24. PubMed ID: 21722735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional protein expression from a DNA based wheat germ cell-free system.
    Zhao KQ; Hurst R; Slater MR; Bulleit RF
    J Struct Funct Genomics; 2007 Dec; 8(4):199-208. PubMed ID: 18034374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Wheat germ cell-free protein synthesis].
    Endo Y; Sawasaki T
    Seikagaku; 2007 Mar; 79(3):229-38. PubMed ID: 17447497
    [No Abstract]   [Full Text] [Related]  

  • 12. Methods for high-throughput materialization of genetic information based on wheat germ cell-free expression system.
    Sawasaki T; Morishita R; Gouda MD; Endo Y
    Methods Mol Biol; 2007; 375():95-106. PubMed ID: 17634598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.
    Nozawa A; Tozawa Y
    Methods Mol Biol; 2014; 1072():259-72. PubMed ID: 24136528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Firm wheat-germ cell-free system with extended vector usage for high-throughput protein screening.
    Lee S; Lassalle MW
    J Biosci Bioeng; 2011 Aug; 112(2):170-7. PubMed ID: 21601517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract.
    Dopp BJL; Tamiev DD; Reuel NF
    Biotechnol Adv; 2019; 37(1):246-258. PubMed ID: 30572024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile Cell-Free Protein Synthesis Systems Based on Chinese Hamster Ovary Cells.
    Thoring L; Kubick S
    Methods Mol Biol; 2018; 1850():289-308. PubMed ID: 30242694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro selection of translational regulatory elements.
    Nagao I; Obokata J
    Anal Biochem; 2006 Jul; 354(1):1-7. PubMed ID: 16707091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of short untranslated regions that sufficiently enhance translation in high-quality wheat germ extract.
    Ogawa A; Tabuchi J; Doi Y
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3724-7. PubMed ID: 25037913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An arabidopsis promoter microarray and its initial usage in the identification of HY5 binding targets in vitro.
    Gao Y; Li J; Strickland E; Hua S; Zhao H; Chen Z; Qu L; Deng XW
    Plant Mol Biol; 2004 Mar; 54(5):683-99. PubMed ID: 15356388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Just add small molecules" cell-free protein synthesis: Combining DNA template and cell extract preparation into a single fermentation.
    Smith SA; Lindgren CM; Ebbert LE; Free TJ; Nelson JAD; Simonson KM; Hunt JP; Bundy BC
    Biotechnol Prog; 2023; 39(3):e3332. PubMed ID: 36799109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.