BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 29235382)

  • 1. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.
    Jyotsana N; Heuser M
    Expert Opin Ther Targets; 2018 Feb; 22(2):107-121. PubMed ID: 29235382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of alternative splicing by antisense oligonucleotides as a potential chemotherapy for cancer and other diseases.
    Mercatante DR; Sazani P; Kole R
    Curr Cancer Drug Targets; 2001 Nov; 1(3):211-30. PubMed ID: 12188880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-mRNA splicing in cancer: the relevance in oncogenesis, treatment and drug resistance.
    Wojtuszkiewicz A; Assaraf YG; Maas MJ; Kaspers GJ; Jansen G; Cloos J
    Expert Opin Drug Metab Toxicol; 2015 May; 11(5):673-89. PubMed ID: 25495223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of alternative splicing in cancer: From oncogenesis to drug resistance.
    Sciarrillo R; Wojtuszkiewicz A; Assaraf YG; Jansen G; Kaspers GJL; Giovannetti E; Cloos J
    Drug Resist Updat; 2020 Dec; 53():100728. PubMed ID: 33070093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant RNA splicing and therapeutic opportunities in cancers.
    Yamauchi H; Nishimura K; Yoshimi A
    Cancer Sci; 2022 Feb; 113(2):373-381. PubMed ID: 34812550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics.
    Urbanski LM; Leclair N; Anczuków O
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1476. PubMed ID: 29693319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: effects on gene expression.
    Mercatante DR; Kole R
    Biochim Biophys Acta; 2002 Jul; 1587(2-3):126-32. PubMed ID: 12084454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic Targeting of RNA Splicing in Cancer.
    Bonner EA; Lee SC
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress toward therapy with antisense-mediated splicing modulation.
    Du L; Gatti RA
    Curr Opin Mol Ther; 2009 Apr; 11(2):116-23. PubMed ID: 19330717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative RNA Splicing as a Potential Major Source of Untapped Molecular Targets in Precision Oncology and Cancer Disparities.
    Robinson TJ; Freedman JA; Al Abo M; Deveaux AE; LaCroix B; Patierno BM; George DJ; Patierno SR
    Clin Cancer Res; 2019 May; 25(10):2963-2968. PubMed ID: 30755441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic targeting of splicing in cancer.
    Lee SC; Abdel-Wahab O
    Nat Med; 2016 Sep; 22(9):976-86. PubMed ID: 27603132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of alternative splicing pathways as a potential approach to chemotherapy.
    Mercatante D; Kole R
    Pharmacol Ther; 2000 Mar; 85(3):237-43. PubMed ID: 10739878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing Factor Mutations in Cancer.
    Bejar R
    Adv Exp Med Biol; 2016; 907():215-28. PubMed ID: 27256388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Targeting of Alternative RNA Splicing in Gastrointestinal Malignancies and Other Cancers.
    Sahin I; George A; Seyhan AA
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant splicing, hyaluronan synthases and intracellular hyaluronan as drivers of oncogenesis and potential drug targets.
    Adamia S; Pilarski PM; Belch AR; Pilarski LM
    Curr Cancer Drug Targets; 2013 May; 13(4):347-61. PubMed ID: 23517594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silent mutations reveal therapeutic vulnerability in RAS Q61 cancers.
    Kobayashi Y; Chhoeu C; Li J; Price KS; Kiedrowski LA; Hutchins JL; Hardin AI; Wei Z; Hong F; Bahcall M; Gokhale PC; Jänne PA
    Nature; 2022 Mar; 603(7900):335-342. PubMed ID: 35236983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy.
    Hahn CN; Venugopal P; Scott HS; Hiwase DK
    Immunol Rev; 2015 Jan; 263(1):257-78. PubMed ID: 25510282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the spliceosome machinery: A new therapeutic axis in cancer?
    Eymin B
    Biochem Pharmacol; 2021 Jul; 189():114039. PubMed ID: 32417188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing.
    Dvinge H; Guenthoer J; Porter PL; Bradley RK
    Genome Res; 2019 Oct; 29(10):1591-1604. PubMed ID: 31434678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging strategies to target the dysfunctional cohesin complex in cancer.
    Mintzas K; Heuser M
    Expert Opin Ther Targets; 2019 Jun; 23(6):525-537. PubMed ID: 31020869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.