These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 29235382)

  • 1. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.
    Jyotsana N; Heuser M
    Expert Opin Ther Targets; 2018 Feb; 22(2):107-121. PubMed ID: 29235382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of alternative splicing by antisense oligonucleotides as a potential chemotherapy for cancer and other diseases.
    Mercatante DR; Sazani P; Kole R
    Curr Cancer Drug Targets; 2001 Nov; 1(3):211-30. PubMed ID: 12188880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-mRNA splicing in cancer: the relevance in oncogenesis, treatment and drug resistance.
    Wojtuszkiewicz A; Assaraf YG; Maas MJ; Kaspers GJ; Jansen G; Cloos J
    Expert Opin Drug Metab Toxicol; 2015 May; 11(5):673-89. PubMed ID: 25495223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of alternative splicing in cancer: From oncogenesis to drug resistance.
    Sciarrillo R; Wojtuszkiewicz A; Assaraf YG; Jansen G; Kaspers GJL; Giovannetti E; Cloos J
    Drug Resist Updat; 2020 Dec; 53():100728. PubMed ID: 33070093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant RNA splicing and therapeutic opportunities in cancers.
    Yamauchi H; Nishimura K; Yoshimi A
    Cancer Sci; 2022 Feb; 113(2):373-381. PubMed ID: 34812550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics.
    Urbanski LM; Leclair N; Anczuków O
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1476. PubMed ID: 29693319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: effects on gene expression.
    Mercatante DR; Kole R
    Biochim Biophys Acta; 2002 Jul; 1587(2-3):126-32. PubMed ID: 12084454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic Targeting of RNA Splicing in Cancer.
    Bonner EA; Lee SC
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress toward therapy with antisense-mediated splicing modulation.
    Du L; Gatti RA
    Curr Opin Mol Ther; 2009 Apr; 11(2):116-23. PubMed ID: 19330717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative RNA Splicing as a Potential Major Source of Untapped Molecular Targets in Precision Oncology and Cancer Disparities.
    Robinson TJ; Freedman JA; Al Abo M; Deveaux AE; LaCroix B; Patierno BM; George DJ; Patierno SR
    Clin Cancer Res; 2019 May; 25(10):2963-2968. PubMed ID: 30755441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic targeting of splicing in cancer.
    Lee SC; Abdel-Wahab O
    Nat Med; 2016 Sep; 22(9):976-86. PubMed ID: 27603132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of alternative splicing pathways as a potential approach to chemotherapy.
    Mercatante D; Kole R
    Pharmacol Ther; 2000 Mar; 85(3):237-43. PubMed ID: 10739878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing Factor Mutations in Cancer.
    Bejar R
    Adv Exp Med Biol; 2016; 907():215-28. PubMed ID: 27256388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Targeting of Alternative RNA Splicing in Gastrointestinal Malignancies and Other Cancers.
    Sahin I; George A; Seyhan AA
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant splicing, hyaluronan synthases and intracellular hyaluronan as drivers of oncogenesis and potential drug targets.
    Adamia S; Pilarski PM; Belch AR; Pilarski LM
    Curr Cancer Drug Targets; 2013 May; 13(4):347-61. PubMed ID: 23517594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silent mutations reveal therapeutic vulnerability in RAS Q61 cancers.
    Kobayashi Y; Chhoeu C; Li J; Price KS; Kiedrowski LA; Hutchins JL; Hardin AI; Wei Z; Hong F; Bahcall M; Gokhale PC; Jänne PA
    Nature; 2022 Mar; 603(7900):335-342. PubMed ID: 35236983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy.
    Hahn CN; Venugopal P; Scott HS; Hiwase DK
    Immunol Rev; 2015 Jan; 263(1):257-78. PubMed ID: 25510282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the spliceosome machinery: A new therapeutic axis in cancer?
    Eymin B
    Biochem Pharmacol; 2021 Jul; 189():114039. PubMed ID: 32417188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing.
    Dvinge H; Guenthoer J; Porter PL; Bradley RK
    Genome Res; 2019 Oct; 29(10):1591-1604. PubMed ID: 31434678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging strategies to target the dysfunctional cohesin complex in cancer.
    Mintzas K; Heuser M
    Expert Opin Ther Targets; 2019 Jun; 23(6):525-537. PubMed ID: 31020869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.