BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29235477)

  • 21. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule.
    Al-Bassam J; Kim H; Brouhard G; van Oijen A; Harrison SC; Chang F
    Dev Cell; 2010 Aug; 19(2):245-58. PubMed ID: 20708587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterisation of the fission yeast Ndc80 complex.
    Matsuo Y; Maurer SP; Surrey T; Toda T
    Protein Expr Purif; 2017 Jul; 135():61-69. PubMed ID: 28502666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules.
    Erent M; Drummond DR; Cross RA
    PLoS One; 2012; 7(2):e30738. PubMed ID: 22363481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microtubules switch occasionally into unfavorable configurations during elongation.
    Chrétien D; Fuller SD
    J Mol Biol; 2000 May; 298(4):663-76. PubMed ID: 10788328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability.
    Manka SW; Moores CA
    Nat Struct Mol Biol; 2018 Jul; 25(7):607-615. PubMed ID: 29967541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microtubule stabilization in vivo by nucleation-incompetent γ-tubulin complex.
    Anders A; Sawin KE
    J Cell Sci; 2011 Apr; 124(Pt 8):1207-13. PubMed ID: 21444751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form.
    Beinhauer JD; Hagan IM; Hegemann JH; Fleig U
    J Cell Biol; 1997 Nov; 139(3):717-28. PubMed ID: 9348288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam.
    Sandblad L; Busch KE; Tittmann P; Gross H; Brunner D; Hoenger A
    Cell; 2006 Dec; 127(7):1415-24. PubMed ID: 17190604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural rearrangements in tubulin following microtubule formation.
    Krebs A; Goldie KN; Hoenger A
    EMBO Rep; 2005 Mar; 6(3):227-32. PubMed ID: 15731766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fission yeast transforming acidic coiled coil-related protein Mia1p/Alp7p is required for formation and maintenance of persistent microtubule-organizing centers at the nuclear envelope.
    Zheng L; Schwartz C; Wee L; Oliferenko S
    Mol Biol Cell; 2006 May; 17(5):2212-22. PubMed ID: 16481403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microtubule structure by cryo-EM: snapshots of dynamic instability.
    Manka SW; Moores CA
    Essays Biochem; 2018 Dec; 62(6):737-751. PubMed ID: 30315096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis.
    Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E
    Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural determinants of microtubule minus end preference in CAMSAP CKK domains.
    Atherton J; Luo Y; Xiang S; Yang C; Rai A; Jiang K; Stangier M; Vemu A; Cook AD; Wang S; Roll-Mecak A; Steinmetz MO; Akhmanova A; Baldus M; Moores CA
    Nat Commun; 2019 Nov; 10(1):5236. PubMed ID: 31748546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. mmb1p binds mitochondria to dynamic microtubules.
    Fu C; Jain D; Costa J; Velve-Casquillas G; Tran PT
    Curr Biol; 2011 Sep; 21(17):1431-9. PubMed ID: 21856157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anchoring microtubules at the spindle poles.
    Paoletti A; Tran PT
    Nat Cell Biol; 2007 Jun; 9(6):619-21. PubMed ID: 17541414
    [No Abstract]   [Full Text] [Related]  

  • 37. Reconstitution of a microtubule plus-end tracking system in vitro.
    Bieling P; Laan L; Schek H; Munteanu EL; Sandblad L; Dogterom M; Brunner D; Surrey T
    Nature; 2007 Dec; 450(7172):1100-5. PubMed ID: 18059460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules.
    Andreu JM; Bordas J; Diaz JF; García de Ancos J; Gil R; Medrano FJ; Nogales E; Pantos E; Towns-Andrews E
    J Mol Biol; 1992 Jul; 226(1):169-84. PubMed ID: 1352357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissection of the angle of single fluorophore attached to the nucleotide in corkscrewing microtubules.
    Fujimura S; Ito Y; Ikeguchi M; Adachi K; Yajima J; Nishizaka T
    Biochem Biophys Res Commun; 2017 Apr; 485(3):614-620. PubMed ID: 28257843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proper microtubule structure is vital for timely progression through meiosis in fission yeast.
    Yamashita A; Fujita Y; Yamamoto M
    PLoS One; 2013; 8(6):e65082. PubMed ID: 23755176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.