These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441 [TBL] [Abstract][Full Text] [Related]
3. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
4. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Sasaki M; Karikkineth BC; Nagamine K; Kaji H; Torimitsu K; Nishizawa M Adv Healthc Mater; 2014 Nov; 3(11):1919-27. PubMed ID: 24912988 [TBL] [Abstract][Full Text] [Related]
5. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Pires F; Ferreira Q; Rodrigues CA; Morgado J; Ferreira FC Biochim Biophys Acta; 2015 Jun; 1850(6):1158-68. PubMed ID: 25662071 [TBL] [Abstract][Full Text] [Related]
6. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925 [TBL] [Abstract][Full Text] [Related]
7. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation. Guan S; Wang Y; Xie F; Wang S; Xu W; Xu J; Sun C Molecules; 2022 Nov; 27(23):. PubMed ID: 36500418 [TBL] [Abstract][Full Text] [Related]
8. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857 [TBL] [Abstract][Full Text] [Related]
9. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering. Wang S; Guan S; Xu J; Li W; Ge D; Sun C; Liu T; Ma X Biomater Sci; 2017 Sep; 5(10):2024-2034. PubMed ID: 28894864 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308 [TBL] [Abstract][Full Text] [Related]
11. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces. Mantione D; Del Agua I; Schaafsma W; Diez-Garcia J; Castro B; Sardon H; Mecerreyes D Macromol Biosci; 2016 Aug; 16(8):1227-38. PubMed ID: 27168277 [TBL] [Abstract][Full Text] [Related]
12. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. Gong HY; Park J; Kim W; Kim J; Lee JY; Koh WG ACS Appl Mater Interfaces; 2019 Dec; 11(51):47695-47706. PubMed ID: 31794187 [TBL] [Abstract][Full Text] [Related]
13. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919 [TBL] [Abstract][Full Text] [Related]
14. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Mousavi A; Mashayekhan S; Baheiraei N; Pourjavadi A Int J Biol Macromol; 2021 Jun; 180():692-708. PubMed ID: 33753199 [TBL] [Abstract][Full Text] [Related]
15. Directly Induced Neural Differentiation of Human Adipose-Derived Stem Cells Using Three-Dimensional Culture System of Conductive Microwell with Electrical Stimulation. Heo DN; Acquah N; Kim J; Lee SJ; Castro NJ; Zhang LG Tissue Eng Part A; 2018 Apr; 24(7-8):537-545. PubMed ID: 28741412 [TBL] [Abstract][Full Text] [Related]
16. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials. Guo R; Zhang S; Xiao M; Qian F; He Z; Li D; Zhang X; Li H; Yang X; Wang M; Chai R; Tang M Biomaterials; 2016 Nov; 106():193-204. PubMed ID: 27566868 [TBL] [Abstract][Full Text] [Related]
17. Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. Guo W; Zhang X; Yu X; Wang S; Qiu J; Tang W; Li L; Liu H; Wang ZL ACS Nano; 2016 May; 10(5):5086-95. PubMed ID: 27144593 [TBL] [Abstract][Full Text] [Related]
18. Highly Electrically Conductive Flexible Ionogels by Drop-Casting Ionic Liquid/PEDOT:PSS Composite Liquids onto Hydrogel Networks. Yang J; Chang L; Ma C; Cao Z; Liu H Macromol Rapid Commun; 2022 Jan; 43(1):e2100557. PubMed ID: 34669220 [TBL] [Abstract][Full Text] [Related]
20. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering. Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]