These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 29235852)

  • 21. The stiffness-thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy.
    Li Y; Mehra N; Ji T; Yang X; Mu L; Gu J; Zhu J
    Nanoscale; 2018 Jan; 10(4):1695-1703. PubMed ID: 29308501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of low melting point alloy/graphene three-dimensional continuous thermal conductive pathway for improving in-plane and through-plane thermal conductivity of poly(vinylidene fluoride) composites.
    Zhang P; Zhang X; Ding X; Wang Y; Shu M; Zeng X; Gong Y; Zheng K; Tian X
    Nanotechnology; 2020 Nov; 31(47):475709. PubMed ID: 32894742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites.
    Pan X; Debije MG; Schenning APHJ; Bastiaansen CWM
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28864-28869. PubMed ID: 34102056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermally Conductive-Silicone Composites with Thermally Reversible Cross-links.
    Wertz JT; Kuczynski JP; Boday DJ
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13669-72. PubMed ID: 27224959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significant Enhancement of Thermal Conductivity in Polymer Composite via Constructing Macroscopic Segregated Filler Networks.
    Zhou H; Deng H; Zhang L; Fu Q
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29071-29081. PubMed ID: 28792203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gallium oxide-stabilized oil in liquid metal emulsions.
    Shah NUH; Kong W; Casey N; Kanetkar S; Wang RY; Rykaczewski K
    Soft Matter; 2021 Sep; 17(36):8269-8275. PubMed ID: 34397076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.
    Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K
    Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal Properties of Polymethyl Methacrylate Composite Containing Copper Nanoparticles.
    Yu W; Xie H; Xin S; Yin J; Jiang Y; Wang M
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3121-5. PubMed ID: 26353547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si
    Shimamura A; Hotta Y; Hyuga H; Hotta M; Hirao K
    Sci Rep; 2020 Sep; 10(1):14926. PubMed ID: 32913256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Performance Liquid Metal/Polyborosiloxane Elastomer toward Thermally Conductive Applications.
    Zhao C; Wang Y; Gao L; Xu Y; Fan Z; Liu X; Ni Y; Xuan S; Deng H; Gong X
    ACS Appl Mater Interfaces; 2022 May; 14(18):21564-21576. PubMed ID: 35475337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Healable and Recyclable Dual-Shape Memory Liquid Metal-Elastomer Composites.
    Deng X; Chen G; Liao Y; Lu X; Hu S; Gan T; Handschuh-Wang S; Zhang X
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system.
    Ha SM; Kwon OH; Oh YG; Kim YS; Lee SG; Won JC; Cho KS; Kim BG; Yoo Y
    Sci Technol Adv Mater; 2015 Dec; 16(6):065001. PubMed ID: 27877843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practical PBT/PC/GNP composites with anisotropic thermal conductivity.
    Zheng X; Wen B
    RSC Adv; 2019 Nov; 9(62):36316-36323. PubMed ID: 35540591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the Thermal Conductivity Inhomogeneities of Injection-Molded Particle-Filled Composites, Caused by Segregation.
    Suplicz A; Semperger OV; Kovács JG
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31623099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers.
    Suh D; Lee S; Xu C; Jan AA; Baik S
    Phys Chem Chem Phys; 2019 Jan; 21(5):2453-2462. PubMed ID: 30652710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper-based conductive composites with tailored thermal expansion.
    Della Gaspera E; Tucker R; Star K; Lan EH; Ju YS; Dunn B
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10966-74. PubMed ID: 24175870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
    Bartlett MD; Kazem N; Powell-Palm MJ; Huang X; Sun W; Malen JA; Majidi C
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2143-2148. PubMed ID: 28193902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designable Electrical/Thermal Coordinated Dual-Regulation Based on Liquid Metal Shape Memory Polymer Foam for Smart Switch.
    Zhao R; Kang S; Wu C; Cheng Z; Xie Z; Liu Y; Zhang D
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205428. PubMed ID: 36658714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vertically Aligned High-Quality Graphene Foams for Anisotropically Conductive Polymer Composites with Ultrahigh Through-Plane Thermal Conductivities.
    An F; Li X; Min P; Liu P; Jiang ZG; Yu ZZ
    ACS Appl Mater Interfaces; 2018 May; 10(20):17383-17392. PubMed ID: 29706070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High performance liquid metal thermal interface materials.
    Chen S; Deng Z; Liu J
    Nanotechnology; 2021 Feb; 32(9):092001. PubMed ID: 33207322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.