These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29235874)

  • 21. Decorating a liquid interface promotes splashing.
    Douezan S; Brochard-Wyart F
    Langmuir; 2011 Aug; 27(16):9955-60. PubMed ID: 21749076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effect of Surface Roughness on the Contact Line and Splashing Dynamics of Impacting Droplets.
    Quetzeri-Santiago MA; Castrejón-Pita AA; Castrejón-Pita JR
    Sci Rep; 2019 Oct; 9(1):15030. PubMed ID: 31636321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.
    Lee JB; Derome D; Dolatabadi A; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1279-88. PubMed ID: 26745364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of splashing in high- and low-viscosity liquids.
    Stevens CS; Latka A; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063006. PubMed ID: 25019878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological applications of kinetics of wetting and spreading.
    Ahmed G; Arjmandi Tash O; Cook J; Trybala A; Starov V
    Adv Colloid Interface Sci; 2017 Nov; 249():17-36. PubMed ID: 28919372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the drop impact on moving hydrophilic and hydrophobic surfaces.
    Almohammadi H; Amirfazli A
    Soft Matter; 2017 Mar; 13(10):2040-2053. PubMed ID: 28198895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How micropatterns and air pressure affect splashing on surfaces.
    Tsai P; van der Veen RC; van de Raa M; Lohse D
    Langmuir; 2010 Oct; 26(20):16090-5. PubMed ID: 20860398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing.
    Riboux G; Gordillo JM
    Phys Rev Lett; 2014 Jul; 113(2):024507. PubMed ID: 25062193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thin film formation during splashing of viscous liquids.
    Driscoll MM; Stevens CS; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036302. PubMed ID: 21230166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic wetting of dilute polymer solutions: the case of impacting droplets.
    Bertola V
    Adv Colloid Interface Sci; 2013 Jun; 193-194():1-11. PubMed ID: 23597730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry.
    Bolleddula DA; Berchielli A; Aliseda A
    Adv Colloid Interface Sci; 2010 Sep; 159(2):144-59. PubMed ID: 20638044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Splashing generation by water jet impinging on a horizontal plate.
    Qian S; Zhu DZ; Xu H
    Exp Therm Fluid Sci; 2022 Jan; 130():110518. PubMed ID: 34518737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Nanoparticles in Nanofluid Droplet Impact on Solid Surfaces.
    Aksoy YT; Liu L; Abboud M; Vetrano MR; Koos E
    Langmuir; 2023 Jan; 39(1):12-19. PubMed ID: 36548220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphing and vectoring impacting droplets by means of wettability-engineered surfaces.
    Schutzius TM; Graeber G; Elsharkawy M; Oreluk J; Megaridis CM
    Sci Rep; 2014 Nov; 4():7029. PubMed ID: 25392084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure.
    Latka A; Strandburg-Peshkin A; Driscoll MM; Stevens CS; Nagel SR
    Phys Rev Lett; 2012 Aug; 109(5):054501. PubMed ID: 23006177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic atomization: effect of liquid phase properties.
    Avvaru B; Patil MN; Gogate PR; Pandit AB
    Ultrasonics; 2006 Feb; 44(2):146-58. PubMed ID: 16321416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamics of electro-capillarity propelled non-Newtonian droplets through micro-confinements.
    Dhar P; Paul A
    Eur Phys J E Soft Matter; 2022 Apr; 45(4):38. PubMed ID: 35467174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.