These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29235971)

  • 1. Western blot analysis of cells encapsulated in self-assembling peptide hydrogels.
    Burgess KA; Miller AF; Oceandy D; Saiani A
    Biotechniques; 2017 Dec; 63(6):253-260. PubMed ID: 29235971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle.
    Lim HJ; Mosley MC; Kurosu Y; Smith Callahan LA
    Acta Biomater; 2017 Jul; 56():153-160. PubMed ID: 27915022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides.
    Horgan CC; Rodriguez AL; Li R; Bruggeman KF; Stupka N; Raynes JK; Day L; White JW; Williams RJ; Nisbet DR
    Acta Biomater; 2016 Jul; 38():11-22. PubMed ID: 27131571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling peptide-based hydrogels: Fabrication, properties, and applications.
    Fu K; Wu H; Su Z
    Biotechnol Adv; 2021; 49():107752. PubMed ID: 33838284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of Human Cardiac Tissue Toward Extracellular Matrix Self-assembling Hydrogel for In Vitro and In Vivo Applications.
    Becker M; Maring JA; Oberwallner B; Kappler B; Klein O; Falk V; Stamm C
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A General Method to Prepare Peptide-Based Supramolecular Hydrogels.
    Yuan D; Shi J; Zhou N; Xu B
    Methods Mol Biol; 2018; 1777():175-180. PubMed ID: 29744834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A de novo self-assembling peptide hydrogel biosensor with covalently immobilised DNA-recognising motifs.
    King PJ; Saiani A; Bichenkova EV; Miller AF
    Chem Commun (Camb); 2016 May; 52(40):6697-700. PubMed ID: 27117274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition.
    DiMaio JTM; Doran TM; Ryan DM; Raymond DM; Nilsson BL
    Biomacromolecules; 2017 Nov; 18(11):3591-3599. PubMed ID: 28872306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.
    Sun Y; Li W; Wu X; Zhang N; Zhang Y; Ouyang S; Song X; Fang X; Seeram R; Xue W; He L; Wu W
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2348-59. PubMed ID: 26720334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel.
    Bruggeman KF; Rodriguez AL; Parish CL; Williams RJ; Nisbet DR
    Nanotechnology; 2016 Sep; 27(38):385102. PubMed ID: 27517970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein solubilization: attend to the choice of lysis buffer.
    Peach M; Marsh N; Macphee DJ
    Methods Mol Biol; 2012; 869():37-47. PubMed ID: 22585475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of protein structure on their controlled release from an injectable peptide hydrogel.
    Branco MC; Pochan DJ; Wagner NJ; Schneider JP
    Biomaterials; 2010 Dec; 31(36):9527-34. PubMed ID: 20952055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.
    Maleki M; Natalello A; Pugliese R; Gelain F
    Acta Biomater; 2017 Mar; 51():268-278. PubMed ID: 28093364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-mechanical property correlations of hydrogel forming β-sheet peptides.
    De Leon Rodriguez LM; Hemar Y; Cornish J; Brimble MA
    Chem Soc Rev; 2016 Aug; 45(17):4797-824. PubMed ID: 27301699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the metal mediated assembly and hydrogel formation of a β-hairpin peptide.
    De Leon-Rodriguez LM; Hemar Y; Mitra AK; Brimble MA
    Biomater Sci; 2017 Sep; 5(10):1993-1997. PubMed ID: 28853745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel.
    Nagai Y; Yokoi H; Kaihara K; Naruse K
    Biomaterials; 2012 Feb; 33(4):1044-51. PubMed ID: 22056753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.