BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29236247)

  • 1. 5'-Bromouridine IP Chase (BRIC)-Seq to Determine RNA Half-Lives.
    Yamada T; Imamachi N; Onoguchi-Mizutani R; Imamura K; Suzuki Y; Akimitsu N
    Methods Mol Biol; 2018; 1720():1-13. PubMed ID: 29236247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BRIC-seq: a genome-wide approach for determining RNA stability in mammalian cells.
    Imamachi N; Tani H; Mizutani R; Imamura K; Irie T; Suzuki Y; Akimitsu N
    Methods; 2014 May; 67(1):55-63. PubMed ID: 23872059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of long noncoding RNA turnover.
    Tani H; Imamachi N; Mizutani R; Imamura K; Kwon Y; Miyazaki S; Maekawa S; Suzuki Y; Akimitsu N
    Methods Mol Biol; 2015; 1262():305-20. PubMed ID: 25555590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance.
    Maekawa S; Imamachi N; Irie T; Tani H; Matsumoto K; Mizutani R; Imamura K; Kakeda M; Yada T; Sugano S; Suzuki Y; Akimitsu N
    BMC Genomics; 2015 Mar; 16(1):154. PubMed ID: 25879614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals.
    Tani H; Mizutani R; Salam KA; Tano K; Ijiri K; Wakamatsu A; Isogai T; Suzuki Y; Akimitsu N
    Genome Res; 2012 May; 22(5):947-56. PubMed ID: 22369889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of RNA.
    Paulsen MT; Veloso A; Prasad J; Bedi K; Ljungman EA; Magnuson B; Wilson TE; Ljungman M
    Methods; 2014 May; 67(1):45-54. PubMed ID: 23973811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome stability profiling using 5'-bromouridine IP chase (BRIC-seq) identifies novel and functional microRNA targets in human melanoma cells.
    Joshi P; Seki T; Kitamura S; Bergano A; Lee B; Perera RJ
    RNA Biol; 2019 Oct; 16(10):1355-1363. PubMed ID: 31179855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining mRNA Decay Rates Using RNA Approach to Equilibrium Sequencing (RATE-Seq).
    Abdul-Rahman F; Gresham D
    Methods Mol Biol; 2018; 1720():15-24. PubMed ID: 29236248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of RNA metabolism using bio-orthogonal labeling coupled with next-generation RNA sequencing.
    Wolfe MB; Goldstrohm AC; Freddolino PL
    Methods; 2019 Feb; 155():88-103. PubMed ID: 30529548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiouridine-to-Cytidine Conversion Sequencing (TUC-Seq) to Measure mRNA Transcription and Degradation Rates.
    Lusser A; Gasser C; Trixl L; Piatti P; Delazer I; Rieder D; Bashin J; Riml C; Amort T; Micura R
    Methods Mol Biol; 2020; 2062():191-211. PubMed ID: 31768978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome-Wide Mapping 5-Methylcytosine by m
    Gu X; Liang Z
    Methods Mol Biol; 2019; 1933():389-394. PubMed ID: 30945199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins.
    Garzia A; Morozov P; Sajek M; Meyer C; Tuschl T
    Methods Mol Biol; 2018; 1720():55-75. PubMed ID: 29236251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of RNA Synthesis Using 5-Bromouridine Labelling and Immunoprecipitation.
    Kofoed RH; Betzer C; Lykke-Andersen S; Molska E; Jensen PH
    J Vis Exp; 2018 May; (135):. PubMed ID: 29782024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Labeling of RNAs Uncovers Hidden Features and Dynamics of the Arabidopsis Transcriptome.
    Szabo EX; Reichert P; Lehniger MK; Ohmer M; de Francisco Amorim M; Gowik U; Schmitz-Linneweber C; Laubinger S
    Plant Cell; 2020 Apr; 32(4):871-887. PubMed ID: 32060173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.
    Zhang Z; Xing Y
    Nucleic Acids Res; 2017 Sep; 45(16):9260-9271. PubMed ID: 28934506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Cellular Nonsense-Mediated mRNA Decay (NMD) Targets: Immunoprecipitation of Phosphorylated UPF1 Followed by RNA Sequencing (p-UPF1 RIP-Seq).
    Kurosaki T; Hoque M; Maquat LE
    Methods Mol Biol; 2018; 1720():175-186. PubMed ID: 29236259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboswitch discovery by combining RNA-seq and genome-wide identification of transcriptional start sites.
    Rosinski-Chupin I; Soutourina O; Martin-Verstraete I
    Methods Enzymol; 2014; 549():3-27. PubMed ID: 25432742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interactome capture in yeast.
    Beckmann BM
    Methods; 2017 Apr; 118-119():82-92. PubMed ID: 27993706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoprecipitation and High-Throughput Sequencing of ARGONAUTE-Bound Target RNAs from Plants.
    Carbonell A
    Methods Mol Biol; 2017; 1640():93-112. PubMed ID: 28608336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DRUID: a pipeline for transcriptome-wide measurements of mRNA stability.
    Lugowski A; Nicholson B; Rissland OS
    RNA; 2018 May; 24(5):623-632. PubMed ID: 29438994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.