These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 2923625)
1. Substoichiometric concentrations of ATP-G-actin are required to anneal actin polymerized by calcium ions. Grazi E; Trombetta G; Rizzieri L; Guidoboni M Biochem Biophys Res Commun; 1989 Feb; 159(1):7-13. PubMed ID: 2923625 [TBL] [Abstract][Full Text] [Related]
2. Rate constants for actin polymerization in ATP determined using cross-linked actin trimers as nuclei. Lal AA; Korn ED; Brenner SL J Biol Chem; 1984 Jul; 259(14):8794-800. PubMed ID: 6746624 [TBL] [Abstract][Full Text] [Related]
3. The rate constant for ATP hydrolysis by polymerized actin. Pollard TD; Weeds AG FEBS Lett; 1984 May; 170(1):94-8. PubMed ID: 6427006 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of CaCl2-induced actin polymerization. Tellam R Biochemistry; 1985 Jul; 24(16):4455-60. PubMed ID: 4052409 [TBL] [Abstract][Full Text] [Related]
5. The kinetics of the exchange of G-actin-bound 1: N6-ethenoadenosine 5'-triphosphate with ATP as followed by fluorescence. Waechter F; Engel J Eur J Biochem; 1975 Sep; 57(2):453-9. PubMed ID: 240724 [TBL] [Abstract][Full Text] [Related]
10. The effect of ATP concentration on the rate of actin polymerization. Fung BM; Eyob E Arch Biochem Biophys; 1983 Feb; 220(2):370-8. PubMed ID: 6824330 [TBL] [Abstract][Full Text] [Related]
11. Interaction between insulin-storage granules and F-actin in vitro. Howell SL; Tyhurst M Biochem J; 1979 Feb; 178(2):367-71. PubMed ID: 220962 [TBL] [Abstract][Full Text] [Related]
12. Effects of temperature on actin polymerized by Ca2+. Direct evidence of fragmentation. Grazi E; Trombetta G Biochem J; 1985 Nov; 232(1):297-300. PubMed ID: 4084236 [TBL] [Abstract][Full Text] [Related]
13. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis. Pieper U; Wegner A Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188 [TBL] [Abstract][Full Text] [Related]
14. The polymerization of actin. A study of the nucleation reaction. Grazi E; Ferri A; Cino S Biochem J; 1983 Sep; 213(3):727-32. PubMed ID: 6615456 [TBL] [Abstract][Full Text] [Related]
15. The influence of adenosine triphosphate, adenosine diphosphate and cytochalasin B on nucleotide exchange of F-actin. Evidence that treadmilling is not involved. Dancker P; Fischer S Biochim Biophys Acta; 1985 Jan; 838(1):6-11. PubMed ID: 3967046 [TBL] [Abstract][Full Text] [Related]
16. Direct demonstration of actin filament annealing in vitro. Murphy DB; Gray RO; Grasser WA; Pollard TD J Cell Biol; 1988 Jun; 106(6):1947-54. PubMed ID: 3384850 [TBL] [Abstract][Full Text] [Related]
17. Diphasic transformations of F-actin. Effects of urea and MgCl2 on F-actin. Taniguchi M Biochim Biophys Acta; 1976 Mar; 427(1):126-40. PubMed ID: 130928 [TBL] [Abstract][Full Text] [Related]
19. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. Carlier MF; Pantaloni D; Korn ED J Biol Chem; 1987 Mar; 262(7):3052-9. PubMed ID: 3818633 [TBL] [Abstract][Full Text] [Related]
20. Rabbit skeletal muscle F-actin can be stable at low ionic strength, provided trace amounts of Ca2+ are absent. Avissar N; Kaminsky E; Leibovich SJ; Oplatka A Biochim Biophys Acta; 1979 Apr; 577(2):267-72. PubMed ID: 110352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]