These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29236478)

  • 1. Coexistence of Multilayered Phases of Confined Water: The Importance of Flexible Confining Surfaces.
    Ruiz Pestana L; Felberg LE; Head-Gordon T
    ACS Nano; 2018 Jan; 12(1):448-454. PubMed ID: 29236478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons.
    Qiu H; Zeng XC; Guo W
    ACS Nano; 2015 Oct; 9(10):9877-84. PubMed ID: 26348704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Diagram of Water Confined by Graphene.
    Gao Z; Giovambattista N; Sahin O
    Sci Rep; 2018 Apr; 8(1):6228. PubMed ID: 29670160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice-Liquid Oscillations in Nanoconfined Water.
    Kastelowitz N; Molinero V
    ACS Nano; 2018 Aug; 12(8):8234-8239. PubMed ID: 30024723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water confined in nanotubes and between graphene sheets: a first principle study.
    Cicero G; Grossman JC; Schwegler E; Gygi F; Galli G
    J Am Chem Soc; 2008 Feb; 130(6):1871-8. PubMed ID: 18211065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commensurability effect in diblock copolymer lamellar phase under d-dimensional nanoconfinement.
    Huh J; Park C; Kwon YK
    J Chem Phys; 2010 Sep; 133(11):114903. PubMed ID: 20866153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of Water Flows Confined between Multilayer Graphene Walls.
    Li F; Korotkin IA; Karabasov SA
    Langmuir; 2020 May; 36(20):5633-5646. PubMed ID: 32370511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully atomistic molecular dynamics simulations of the behavior of a simple model of crude oil confined between graphene planes.
    Maldonado E; Roth MW; Gray PA
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1211-7. PubMed ID: 20355915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures.
    Docampo-Álvarez B; Gómez-González V; Montes-Campos H; Otero-Mato JM; Méndez-Morales T; Cabeza O; Gallego LJ; Lynden-Bell RM; Ivaništšev VB; Fedorov MV; Varela LM
    J Phys Condens Matter; 2016 Nov; 28(46):464001. PubMed ID: 27623714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Square ice in graphene nanocapillaries.
    Algara-Siller G; Lehtinen O; Wang FC; Nair RR; Kaiser U; Wu HA; Geim AK; Grigorieva IV
    Nature; 2015 Mar; 519(7544):443-5. PubMed ID: 25810206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of water nano-confined between corrugated planes.
    Zubeltzu J; Artacho E
    J Chem Phys; 2017 Nov; 147(19):194509. PubMed ID: 29166107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous Freezing of Low-Dimensional Water Confined in Graphene Nanowrinkles.
    Verhagen T; Klimes J; Pacakova B; Kalbac M; Vejpravova J
    ACS Nano; 2020 Nov; 14(11):15587-15594. PubMed ID: 33119250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric-field-induced phase transition of confined water nanofilms between two graphene sheets.
    Qian Z; Wei G
    J Phys Chem A; 2014 Oct; 118(39):8922-8. PubMed ID: 24831927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water-wall interaction potential on the properties of nanoconfined water.
    Kumar P; Starr FW; Buldyrev SV; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011202. PubMed ID: 17358138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces.
    Giovambattista N; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2009 Oct; 113(42):13723-34. PubMed ID: 19435300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why different water models predict different structures under 2D confinement.
    Dix J; Lue L; Carbone P
    J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effect of nanoconfinement on the structure of water hydrogen bond networks.
    Oh MI; Gupta M; Oh CI; Weaver DF
    Phys Chem Chem Phys; 2019 Dec; 21(47):26237-26250. PubMed ID: 31769468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets.
    Deshmukh SA; Kamath G; Sankaranarayanan SK
    Soft Matter; 2014 Jun; 10(23):4067-83. PubMed ID: 24845025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.