BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29236481)

  • 1. Exploring the Nanotoxicology of MoS
    Gu Z; Plant LD; Meng XY; Perez-Aguilar JM; Wang Z; Dong M; Logothetis DE; Zhou R
    ACS Nano; 2018 Jan; 12(1):705-717. PubMed ID: 29236481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?
    Tarek M; Delemotte L
    Acc Chem Res; 2013 Dec; 46(12):2755-62. PubMed ID: 23697886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential blockade of the human voltage-dependent anion channel by MoS
    Gu Z; Song W; Liu S; Li B; Plant LD; Meng XY
    Phys Chem Chem Phys; 2019 May; 21(18):9520-9530. PubMed ID: 31020281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifaceted Regulation of Potassium-Ion Channels by Graphene Quantum Dots.
    Gu Z; Baggetta AM; Chong Y; Plant LD; Meng XY; Zhou R
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):27784-27795. PubMed ID: 34126740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter.
    Tilegenova C; Cortes DM; Cuello LG
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3234-3239. PubMed ID: 28265056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels.
    Fu W; Cui M; Briggs JM; Huang X; Xiong B; Zhang Y; Luo X; Shen J; Ji R; Jiang H; Chen K
    Biophys J; 2002 Nov; 83(5):2370-85. PubMed ID: 12414674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of specific lipid binding to potassium channels.
    Weingarth M; Prokofyev A; van der Cruijsen EA; Nand D; Bonvin AM; Pongs O; Baldus M
    J Am Chem Soc; 2013 Mar; 135(10):3983-8. PubMed ID: 23425320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-function analysis of the K+-selective family of ion channels using a comprehensive alignment and the KcsA channel structure.
    Shealy RT; Murphy AD; Ramarathnam R; Jakobsson E; Subramaniam S
    Biophys J; 2003 May; 84(5):2929-42. PubMed ID: 12719225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum mechanical calculations of charge effects on gating the KcsA channel.
    Kariev AM; Znamenskiy VS; Green ME
    Biochim Biophys Acta; 2007 May; 1768(5):1218-29. PubMed ID: 17336921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
    Liu HL; Lin JC
    Proteins; 2004 May; 55(3):558-67. PubMed ID: 15103620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.
    Elliott DJ; Neale EJ; Munsey TS; Bannister JP; Sivaprasadarao A
    Mol Membr Biol; 2012 Dec; 29(8):321-32. PubMed ID: 22881396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations.
    Jorgensen C; Darré L; Oakes V; Torella R; Pryde D; Domene C
    Mol Pharm; 2016 Jul; 13(7):2263-73. PubMed ID: 27173896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic domino effect in the Shaker K channel turret.
    Broomand A; Osterberg F; Wardi T; Elinder F
    Biophys J; 2007 Oct; 93(7):2307-14. PubMed ID: 17545243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An S6 mutation in BK channels reveals beta1 subunit effects on intrinsic and voltage-dependent gating.
    Wang B; Brenner R
    J Gen Physiol; 2006 Dec; 128(6):731-44. PubMed ID: 17130522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small conductance calcium-activated potassium channels: from structure to function.
    Weatherall KL; Goodchild SJ; Jane DE; Marrion NV
    Prog Neurobiol; 2010 Jul; 91(3):242-55. PubMed ID: 20359520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism.
    Watanabe I; Wang HG; Sutachan JJ; Zhu J; Recio-Pinto E; Thornhill WB
    J Physiol; 2003 Jul; 550(Pt 1):51-66. PubMed ID: 12879861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular mechanism of robust macrophage immune responses induced by PEGylated molybdenum disulfide.
    Gu Z; Chen SH; Ding Z; Song W; Wei W; Liu S; Ma G; Zhou R
    Nanoscale; 2019 Nov; 11(46):22293-22304. PubMed ID: 31746904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dipeptidyl-aminopeptidase-like protein 6 is an integral voltage sensor-interacting beta-subunit of neuronal K(V)4.2 channels.
    Dougherty K; Tu L; Deutsch C; Covarrubias M
    Channels (Austin); 2009; 3(2):122-8. PubMed ID: 19372736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.