BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 29236694)

  • 1. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic.
    He K; Marsland R; Upadhyayula S; Song E; Dang S; Capraro BR; Wang W; Skillern W; Gaudin R; Ma M; Kirchhausen T
    Nature; 2017 Dec; 552(7685):410-414. PubMed ID: 29236694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylinositol 3,4-bisphosphate synthesis and turnover are spatially segregated in the endocytic pathway.
    Wang H; Loerke D; Bruns C; Müller R; Koch PA; Puchkov D; Schultz C; Haucke V
    J Biol Chem; 2020 Jan; 295(4):1091-1104. PubMed ID: 31831620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoinositides in endocytosis.
    Posor Y; Eichhorn-Grünig M; Haucke V
    Biochim Biophys Acta; 2015 Jun; 1851(6):794-804. PubMed ID: 25264171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab35 GTPase Triggers Switch-like Recruitment of the Lowe Syndrome Lipid Phosphatase OCRL on Newborn Endosomes.
    Cauvin C; Rosendale M; Gupta-Rossi N; Rocancourt M; Larraufie P; Salomon R; Perrais D; Echard A
    Curr Biol; 2016 Jan; 26(1):120-8. PubMed ID: 26725203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature.
    Daste F; Walrant A; Holst MR; Gadsby JR; Mason J; Lee JE; Brook D; Mettlen M; Larsson E; Lee SF; Lundmark R; Gallop JL
    J Cell Biol; 2017 Nov; 216(11):3745-3765. PubMed ID: 28923975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate.
    Posor Y; Eichhorn-Gruenig M; Puchkov D; Schöneberg J; Ullrich A; Lampe A; Müller R; Zarbakhsh S; Gulluni F; Hirsch E; Krauss M; Schultz C; Schmoranzer J; Noé F; Haucke V
    Nature; 2013 Jul; 499(7457):233-7. PubMed ID: 23823722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.
    Nández R; Balkin DM; Messa M; Liang L; Paradise S; Czapla H; Hein MY; Duncan JS; Mann M; De Camilli P
    Elife; 2014 Aug; 3():e02975. PubMed ID: 25107275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics.
    Nakatsu F; Perera RM; Lucast L; Zoncu R; Domin J; Gertler FB; Toomre D; De Camilli P
    J Cell Biol; 2010 Aug; 190(3):307-15. PubMed ID: 20679431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoinositide regulation of clathrin-mediated endocytosis.
    Haucke V
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1285-9. PubMed ID: 16246100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNX15 links clathrin endocytosis to the PtdIns3P early endosome independently of the APPL1 endosome.
    Danson C; Brown E; Hemmings OJ; McGough IJ; Yarwood S; Heesom KJ; Carlton JG; Martin-Serrano J; May MT; Verkade P; Cullen PJ
    J Cell Sci; 2013 Nov; 126(Pt 21):4885-99. PubMed ID: 23986476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes.
    Zoncu R; Perera RM; Balkin DM; Pirruccello M; Toomre D; De Camilli P
    Cell; 2009 Mar; 136(6):1110-21. PubMed ID: 19303853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic.
    He K; Song E; Upadhyayula S; Dang S; Gaudin R; Skillern W; Bu K; Capraro BR; Rapoport I; Kusters I; Ma M; Kirchhausen T
    J Cell Biol; 2020 Mar; 219(3):. PubMed ID: 31962345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phosphoinositides: lipidic essential actors in the intracellular traffic].
    Bertazzi DL; De Craene JO; Bär S; Sanjuan-Vazquez M; Raess MA; Friant S
    Biol Aujourdhui; 2015; 209(1):97-109. PubMed ID: 26115715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phosphoinositide conversion mechanism for exit from endosomes.
    Ketel K; Krauss M; Nicot AS; Puchkov D; Wieffer M; Müller R; Subramanian D; Schultz C; Laporte J; Haucke V
    Nature; 2016 Jan; 529(7586):408-12. PubMed ID: 26760201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway.
    Erdmann KS; Mao Y; McCrea HJ; Zoncu R; Lee S; Paradise S; Modregger J; Biemesderfer D; Toomre D; De Camilli P
    Dev Cell; 2007 Sep; 13(3):377-90. PubMed ID: 17765681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size.
    Antonescu CN; Aguet F; Danuser G; Schmid SL
    Mol Biol Cell; 2011 Jul; 22(14):2588-600. PubMed ID: 21613550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. Implications for the endocytic pathway.
    Gaidarov I; Chen Q; Falck JR; Reddy KK; Keen JH
    J Biol Chem; 1996 Aug; 271(34):20922-9. PubMed ID: 8702850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocytosis. Tent pegs for clathrin.
    Brooksbank C
    Nat Rev Mol Cell Biol; 2001 Mar; 2(3):166. PubMed ID: 11265244
    [No Abstract]   [Full Text] [Related]  

  • 19. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit.
    Sato M; Sato K; Fonarev P; Huang CJ; Liou W; Grant BD
    Nat Cell Biol; 2005 Jun; 7(6):559-69. PubMed ID: 15895077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cargo recognition during clathrin-mediated endocytosis: a team effort.
    Sorkin A
    Curr Opin Cell Biol; 2004 Aug; 16(4):392-9. PubMed ID: 15261671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.