BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29236746)

  • 1. Root-derived carbon and nitrogen from beech and ash trees differentially fuel soil animal food webs of deciduous forests.
    Zieger SL; Ammerschubert S; Polle A; Scheu S
    PLoS One; 2017; 12(12):e0189502. PubMed ID: 29236746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences.
    Seven J; Polle A
    PLoS One; 2014; 9(12):e114672. PubMed ID: 25486253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Above and below ground carbohydrate allocation differs between ash (Fraxinus excelsior L.) and beech (Fagus sylvatica L.).
    Thoms R; Köhler M; Gessler A; Gleixner G
    PLoS One; 2017; 12(9):e0184247. PubMed ID: 28934229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest.
    Lang C; Polle A
    Tree Physiol; 2011 May; 31(5):531-8. PubMed ID: 21636693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of tree internal N status on uptake and translocation of C and N in beech: a dual 13C and 15N labeling approach.
    Dyckmans J; Flessa H
    Tree Physiol; 2001 Apr; 21(6):395-401. PubMed ID: 11282579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and amelioration of P-deficiency.
    Geilfus CM; Carpentier SC; Zavišić A; Polle A
    J Proteomics; 2017 Oct; 169():33-40. PubMed ID: 28625739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf litter species identity influences biochemical composition of ectomycorrhizal fungi.
    Yang N; Butenschoen O; Rana R; Köhler L; Hertel D; Leuschner C; Scheu S; Polle A; Pena R
    Mycorrhiza; 2019 Mar; 29(2):85-96. PubMed ID: 30547252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of nitrogen released from 15N-labeled litter in European beech forests.
    Zeller B; Colin-Belgrand M; Dambrine E; Martin F
    Tree Physiol; 2001 Feb; 21(2-3):153-62. PubMed ID: 11303646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roots rather than shoot residues drive soil arthropod communities of arable fields.
    Scheunemann N; Digel C; Scheu S; Butenschoen O
    Oecologia; 2015 Dec; 179(4):1135-45. PubMed ID: 26267404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees.
    Weigt RB; Häberle KH; Millard P; Metzger U; Ritter W; Blaschke H; Göttlein A; Matyssek R
    Tree Physiol; 2012 Oct; 32(10):1259-73. PubMed ID: 23042769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.
    Scheibe A; Gleixner G
    PLoS One; 2014; 9(12):e114040. PubMed ID: 25486628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica).
    Jacob M; Viedenz K; Polle A; Thomas FM
    Oecologia; 2010 Dec; 164(4):1083-94. PubMed ID: 20596729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species.
    Liese R; Lübbe T; Albers NW; Meier IC
    Tree Physiol; 2018 Jan; 38(1):83-95. PubMed ID: 29126247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery.
    Zang U; Goisser M; Grams TE; Häberle KH; Matyssek R; Matzner E; Borken W
    Tree Physiol; 2014 Jan; 34(1):29-38. PubMed ID: 24420388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil.
    Rivera Pérez CA; Janz D; Schneider D; Daniel R; Polle A
    mSystems; 2022 Feb; 7(1):e0095721. PubMed ID: 35089084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Above- and belowground interplay: Canopy CO
    Scartazza A; Sbrana C; D'Andrea E; Matteucci G; Rezaie N; Lauteri M
    Plant Cell Environ; 2023 Mar; 46(3):889-900. PubMed ID: 36541420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source.
    Dong F; Simon J; Rienks M; Lindermayr C; Rennenberg H
    Tree Physiol; 2015 Aug; 35(8):910-20. PubMed ID: 26093371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.
    Holste EK; Kobe RK; Gehring CA
    Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition for nitrogen sources between European beech (Fagus sylvatica) and sycamore maple (Acer pseudoplatanus) seedlings.
    Simon J; Waldhecker P; Brüggemann N; Rennenberg H
    Plant Biol (Stuttg); 2010 May; 12(3):453-8. PubMed ID: 20522181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment.
    Leberecht M; Dannenmann M; Gschwendtner S; Bilela S; Meier R; Simon J; Rennenberg H; Schloter M; Polle A
    Appl Environ Microbiol; 2015 Sep; 81(17):5957-67. PubMed ID: 26092464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.