BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29236862)

  • 1. Ecology and biotechnological potential of bacterial community from three marine sponges of the coast of Rio de Janeiro, Brazil.
    Araújo FV; Netto MCM; Azevedo GP; Jayme MMA; Nunes-Carvalho MC; Silva MM; Carmo FLD
    An Acad Bras Cienc; 2017; 89(4):2785-2792. PubMed ID: 29236862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity and biotechnological potential of the sponge-associated microbial consortia.
    Wang G
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):545-51. PubMed ID: 16761166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury and methylmercury detoxification potential by sponge-associated bacteria.
    Santos-Gandelman JF; Giambiagi-deMarval M; Muricy G; Barkay T; Laport MS
    Antonie Van Leeuwenhoek; 2014 Sep; 106(3):585-90. PubMed ID: 24996548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.
    Kennedy J; Marchesi JR; Dobson AD
    Appl Microbiol Biotechnol; 2007 May; 75(1):11-20. PubMed ID: 17318533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological potential of sponge-associated bacteria.
    Santos-Gandelman JF; Giambiagi-deMarval M; Oelemann WM; Laport MS
    Curr Pharm Biotechnol; 2014; 15(2):143-55. PubMed ID: 25022270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic.
    Esteves AI; Hardoim CC; Xavier JR; Gonçalves JM; Costa R
    FEMS Microbiol Ecol; 2013 Sep; 85(3):519-36. PubMed ID: 23621863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity and biotechnological potential of microorganisms associated with marine sponges.
    Fuerst JA
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7331-47. PubMed ID: 25005058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions.
    Laport MS; Bauwens M; de Oliveira Nunes S; Willenz P; George I; Muricy G
    Antonie Van Leeuwenhoek; 2017 Apr; 110(4):489-499. PubMed ID: 28008548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India.
    Skariyachan S; G Rao A; Patil MR; Saikia B; Bharadwaj Kn V; Rao Gs J
    Lett Appl Microbiol; 2014 Mar; 58(3):231-41. PubMed ID: 24138171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine sponges as microbial fermenters.
    Hentschel U; Usher KM; Taylor MW
    FEMS Microbiol Ecol; 2006 Feb; 55(2):167-77. PubMed ID: 16420625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast.
    Santos OCS; Soares AR; Machado FLS; Romanos MTV; Muricy G; Giambiagi-deMarval M; Laport MS
    Lett Appl Microbiol; 2015 Feb; 60(2):140-147. PubMed ID: 25355062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.
    Marinho PR; Moreira AP; Pellegrino FL; Muricy G; Bastos Mdo C; Santos KR; Giambiagi-deMarval M; Laport MS
    Mem Inst Oswaldo Cruz; 2009 Aug; 104(5):678-82. PubMed ID: 19820824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.
    Webster NS; Xavier JR; Freckelton M; Motti CA; Cobb R
    Environ Microbiol; 2008 Dec; 10(12):3366-76. PubMed ID: 18783385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Metataxonomic Approach Reveals Diversified Bacterial Communities in Antarctic Sponges.
    Ruocco N; Esposito R; Bertolino M; Zazo G; Sonnessa M; Andreani F; Coppola D; Giordano D; Nuzzo G; Lauritano C; Fontana A; Ianora A; Verde C; Costantini M
    Mar Drugs; 2021 Mar; 19(3):. PubMed ID: 33810171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Diversity and Putative Diazotrophy in High- and Low-Microbial-Abundance Mediterranean Sponges.
    Ribes M; Dziallas C; Coma R; Riemann L
    Appl Environ Microbiol; 2015 Sep; 81(17):5683-93. PubMed ID: 26070678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major Antimicrobial Representatives from Marine Sponges and/or Their Associated Bacteria.
    He F; Mai LH; Gardères J; Hussain A; Erakovic Haber V; Bourguet-Kondracki ML
    Prog Mol Subcell Biol; 2017; 55():35-89. PubMed ID: 28238035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature thresholds for bacterial symbiosis with a sponge.
    Webster NS; Cobb RE; Negri AP
    ISME J; 2008 Aug; 2(8):830-42. PubMed ID: 18480849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges.
    Mohamed NM; Colman AS; Tal Y; Hill RT
    Environ Microbiol; 2008 Nov; 10(11):2910-21. PubMed ID: 18761667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolating Bacteria from Sponges: Why and How?
    Laport MS
    Curr Pharm Biotechnol; 2017; 18(15):1224-1236. PubMed ID: 29595106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.
    Parte S; Sirisha VL; D'Souza JS
    Adv Food Nutr Res; 2017; 80():75-106. PubMed ID: 28215329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.