These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29237052)

  • 1. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing.
    Lu J; Zhao C; Zhao Y; Zhang J; Zhang Y; Chen L; Han Q; Ying Y; Peng S; Ai R; Wang Y
    Nucleic Acids Res; 2018 Mar; 46(5):e25. PubMed ID: 29237052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing.
    Liu KI; Ramli MN; Woo CW; Wang Y; Zhao T; Zhang X; Yim GR; Chong BY; Gowher A; Chua MZ; Jung J; Lee JH; Tan MH
    Nat Chem Biol; 2016 Nov; 12(11):980-987. PubMed ID: 27618190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Chemical Inducible Tal Effectors for Genome Editing and Transcription Activation.
    Zhao C; Zhang Y; Zhao Y; Ying Y; Ai R; Zhang J; Wang Y
    ACS Chem Biol; 2018 Mar; 13(3):609-617. PubMed ID: 29308880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIT-Cas9: A CRISPR/Cas9 Genome-Editing Device under Tight and Effective Drug Control.
    Zhao C; Zhao Y; Zhang J; Lu J; Chen L; Zhang Y; Ying Y; Xu J; Wei S; Wang Y
    Mol Ther Nucleic Acids; 2018 Dec; 13():208-219. PubMed ID: 30312845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A guide for drug inducible transcriptional activation with HIT systems.
    Zhao C; Wei S; Wang Y
    Methods Enzymol; 2019; 621():69-86. PubMed ID: 31128790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity.
    Nguyen DP; Miyaoka Y; Gilbert LA; Mayerl SJ; Lee BH; Weissman JS; Conklin BR; Wells JA
    Nat Commun; 2016 Jul; 7():12009. PubMed ID: 27363581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems.
    Liu KI; Ramli MNB; Sutrisnoh NB; Tan MH
    Methods Mol Biol; 2018; 1772():267-288. PubMed ID: 29754234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond Native Cas9: Manipulating Genomic Information and Function.
    Mitsunobu H; Teramoto J; Nishida K; Kondo A
    Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing.
    Park H; Shin J; Choi H; Cho B; Kim J
    Cells; 2020 Jun; 9(6):. PubMed ID: 32532133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.