BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 29237569)

  • 1. Identification of an industrial microalgal strain for starch production in biorefinery context: The effect of nitrogen and carbon concentration on starch accumulation.
    Gifuni I; Olivieri G; Pollio A; Marzocchella A
    N Biotechnol; 2018 Mar; 41():46-54. PubMed ID: 29237569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis.
    Yao CH; Ai JN; Cao XP; Xue S
    Bioresour Technol; 2013 Oct; 146():663-671. PubMed ID: 23982063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation.
    Yao C; Ai J; Cao X; Xue S; Zhang W
    Bioresour Technol; 2012 Aug; 118():438-44. PubMed ID: 22717561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.
    Cheng YS; Labavitch JM; VanderGheynst JS
    Lett Appl Microbiol; 2015 Jan; 60(1):1-7. PubMed ID: 25163669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microalgae starch: A promising raw material for the bioethanol production.
    Maia JLD; Cardoso JS; Mastrantonio DJDS; Bierhals CK; Moreira JB; Costa JAV; Morais MG
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2739-2749. PubMed ID: 33470200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae-based biorefinery--from biofuels to natural products.
    Yen HW; Hu IC; Chen CY; Ho SH; Lee DJ; Chang JS
    Bioresour Technol; 2013 May; 135():166-74. PubMed ID: 23206809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana.
    Li T; Gargouri M; Feng J; Park JJ; Gao D; Miao C; Dong T; Gang DR; Chen S
    Bioresour Technol; 2015 Mar; 180():250-7. PubMed ID: 25616239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.
    Chen CY; Chang HY
    Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.
    Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G
    Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of an in situ CO
    Qi M; Yao C; Sun B; Cao X; Fei Q; Liang B; Ran W; Xiang Q; Zhang Y; Lan X
    Biotechnol Biofuels; 2019; 12():184. PubMed ID: 31341515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ethanol production with starch-based Tetraselmis subcordiformis grown with CO2 produced during ethanol fermentation].
    Liao S; Yao C; Xue S; Zhang W; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1292-8. PubMed ID: 22117512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of different nitrogen sources and concentrations on starch and lipid biosynthesis by Desmodesmus insignis].
    Wu G; Huang L; Gao B; Li A; Zhang C
    Wei Sheng Wu Xue Bao; 2016 Jul; 56(7):1168-77. PubMed ID: 29733178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgae--novel highly efficient starch producers.
    Brányiková I; Maršálková B; Doucha J; Brányik T; Bišová K; Zachleder V; Vítová M
    Biotechnol Bioeng; 2011 Apr; 108(4):766-76. PubMed ID: 21404251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine microalgae selection and culture conditions optimization for biodiesel production.
    San Pedro A; González-López CV; Acién FG; Molina-Grima E
    Bioresour Technol; 2013 Apr; 134():353-61. PubMed ID: 23524159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity.
    Uggetti E; Sialve B; Latrille E; Steyer JP
    Bioresour Technol; 2014; 152():437-43. PubMed ID: 24316486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Bottlenecks and Challenges of the Microalgal Biorefinery.
    Gifuni I; Pollio A; Safi C; Marzocchella A; Olivieri G
    Trends Biotechnol; 2019 Mar; 37(3):242-252. PubMed ID: 30301572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; Mishra S
    Bioresour Technol; 2015 Mar; 179():565-572. PubMed ID: 25579231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.